Home Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
Article
Licensed
Unlicensed Requires Authentication

Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials

  • Karoliina Helanto ORCID logo EMAIL logo , Riku Talja and Orlando J. Rojas
Published/Copyright: August 10, 2021
Become an author with De Gruyter Brill

Abstract

We compared the performance of bio-based and biodegradable polymers for packaging applications. Cost-effective inorganic fillers (talc, kaolin and calcium carbonate) were first melt-compounded with polylactic acid (PLA), poly(butylene adipate-co-terephthalate) (PBAT) and poly(hydroxy butyrate-co-valerate) (PHBV). Following this, injection- and compression-molded specimens were produced to test the effect of filler loading (0–30 wt%) in relation to the morphological, thermal, mechanical and barrier properties of the composites. All the fillers were homogeneously dispersed in the polymer matrices and suitable polymer–filler adhesion was observed for talc and kaolin. The elastic modulus increased at the expense of a reduced tensile and elongation. The most significant improvements in water vapor and oxygen barrier properties were achieved with talc in PLA, PBAT and PHBV films. Overall, the results point to the promise of the introduced compositions for food packaging materials.


Corresponding author: Karoliina Helanto, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland; and Metsä Board Corporation, P.O. Box 20, FI-02020 Metsä, Finland, E-mail:

Acknowledgements

We wish to thank the assistance of Sai Li with the sample preparation, Päivi Kauppinen with the SEM imaging, Tuula Rautiainen with the WVTR analyzes and Säde Mäki (Tampere University) for conducting the oxygen barrier measurements.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bordes, P., Pollet, E., Averous, L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 2009, 34, 125–155; https://doi.org/10.1016/j.progpolymsci.2008.10.002.Search in Google Scholar

2. Leminen, V., Ovaska, S.-S., Tanninen, P., Varis, J. Convertability and oil resistance of paperboard with hydroxypropyl-cellulose-based dispersion barrier coatings. J. Appl. Packag. Res. 2015, 7, 91–100.Search in Google Scholar

3. Plastics Europe. An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed Nov 16, 2020).Search in Google Scholar

4. Helanto, K., Matikainen, L., Talja, R., Rojas, O. Bio-based polymers for sustainable packaging and biobarriers: a critical review. BioResources 2019, 14, 4902–4951.10.15376/biores.14.2.HelantoSearch in Google Scholar

5. Cui, Y., Kumar, S., Rao Kona, B., Van Houcke, D. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2015, 5, 63669–63690; https://doi.org/10.1039/c5ra10333a.Search in Google Scholar

6. Chutimar, D., Chavakorn, S., Suphattra, C. Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran. Polym. J. 2020, 29, 103–116.10.1007/s13726-019-00778-4Search in Google Scholar

7. Helanto, K., Talja, R., Rojas, O. J. J. Appl. Polym. Sci. 2021, 138, e51225; https://doi.org/10.1002/app.51225.Search in Google Scholar

8. Khuenkeao, T., Petchwattana, N., Covavisaruch, S. Thermal and mechanical properties of bioplastic poly(lactic acid) compounded with silicone rubber and talc. AIP Conf. Proc. 2016, 1713, 080005; https://doi.org/10.1063/1.4942294.Search in Google Scholar

9. Li, X., Pan, H., Yang, J., Gao, G., Zhang, H., Yang, H., Dong, L. The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender. Polym. Adv. Technol. 2018, 29, 1706–1717; https://doi.org/10.1002/pat.4274.Search in Google Scholar

10. Phetwarotai, W., Aht-Ong, D. Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc. J. Therm. Anal. Calorim. 2016, 126, 1797–1808; https://doi.org/10.1007/s10973-016-5669-2.Search in Google Scholar

11. Piekarska, K., Piorkowska, E., Bojda, J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym. Test. 2017, 62, 203–209; https://doi.org/10.1016/j.polymertesting.2017.06.025.Search in Google Scholar

12. Qiu, S., Zhou, Y., Waterhouse, G. I. N., Gong, R., Xie, J., Zhang, K., Xu, J. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. 2021, 334, 127487; https://doi.org/10.1016/j.foodchem.2020.127487.Search in Google Scholar PubMed

13. Wang, L., Rhim, J., Hong, S. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT Food Sci. Technol. 2016, 68, 454–461; https://doi.org/10.1016/j.lwt.2015.12.062.Search in Google Scholar

14. Chivrac, F., Kadlecová, Z., Pollet, E., Avérous, L. Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J. Polym. Environ. 2006, 14, 393–401; https://doi.org/10.1007/s10924-006-0033-4.Search in Google Scholar

15. Moustafa, H., Guizani, C., Dufresne, A. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 2017, 134, 44498; https://doi.org/10.1002/app.44498.Search in Google Scholar

16. Musioł, M., Sikorska, W., Janeczek, H., Wałach, W., Hercog, A., Johnston, B., Rydz, J. (Bio)degradable polymeric materials for a sustainable future – part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life. Waste Manag. 2018, 77, 447–454.10.1016/j.wasman.2018.04.030Search in Google Scholar PubMed

17. Venkatesan, R., Rajeswari, N., Tamilselvi, A. Antimicrobial, mechanical, barrier, and thermal properties of bio-based poly(butylene adipate-co-terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application. Polym. Adv. Technol. 2017, 29, 61–68; https://doi.org/10.1002/pat.4089.Search in Google Scholar

18. Bastarrachea, L., Dhawan, S., Sablani, S. S., Mah, J., Kang, D., Zhang, J., Tang, J. Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with Nisin: characterization and effectiveness against Listeria innocua. J. Food Sci. 2010, 75, E215–E224; https://doi.org/10.1111/j.1750-3841.2010.01591.x.Search in Google Scholar PubMed

19. Cunha, M., Fernandes, B., Covas, J., Vicente, A., Hilliou, L. Film blowing of PHBV blends and PHBV-based multilayers for the production of biodegradable packages. J. Appl. Polym. Sci. 2016, 133, 42633; https://doi.org/10.1002/app.42165.Search in Google Scholar

20. Kirboga, S., Öner, M. Oxygen barrier and thermomechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites reinforced with calcium carbonate particles. Acta Chim. Slov. 2020, 67, 137–150; https://doi.org/10.17344/acsi.2019.5291.Search in Google Scholar

21. Duangphet, S., Szegda, D., Song, J. Effect of calcium carbonate on crystallization behavior and morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Key Eng. Mater. 2017, 751, 242–251; https://doi.org/10.4028/www.scientific.net/kem.751.242.Search in Google Scholar

22. da Costa, R. C., Daitx, T. S., Mauler, R. S., da Silva, N. M., Miotto, M., Crespo, J. S., Carli, L. N. Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packag. Shelf Life 2020, 26, 100602; https://doi.org/10.1016/j.fpsl.2020.100602.Search in Google Scholar

23. Hasan, S. K., Zainuddin, S., Tanthongsack, J., Hosur, M., Allen, L. A study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biofilms’ thermal and biodegradable properties reinforced with halloysite nanotubes. J. Compos. Mater. 2018, 52, 3199–3207; https://doi.org/10.1177/0021998318763246.Search in Google Scholar

24. Jain, S., Misra, M., Mohanty, A., Ghosh, A. Thermal, mechanical and rheological behavior of poly(lactic acid)/talc composites. J. Polym. Environ. 2012, 20, 1027–1037; https://doi.org/10.1007/s10924-012-0500-z.Search in Google Scholar

25. Raquez, J., Nabar, Y., Narayan, R., Dubois, P. Novel high-performance talc/poly[(butylene adipate)-co-terephthalate] hybrid materials. Macromol. Mater. Eng. 2008, 293, 310–320; https://doi.org/10.1002/mame.200700352.Search in Google Scholar

26. Zuiderduin, W., Westzaan, C., Huetink, J., Gaymans, R. Toughening of polypropylene with calcium carbonate particles. Polymer 2003, 44, 261–275; https://doi.org/10.1016/s0032-3861(02)00769-3.Search in Google Scholar

27. Yu, F., Liu, T., Zhao, X., Yu, X., Lu, A., Wang, J. Effects of talc on the mechanical and thermal properties of polylactide. J. Appl. Polym. Sci. 2012, 125, E99–E109; https://doi.org/10.1002/app.36260.Search in Google Scholar

28. Ghassemi, A., Moghaddamzadeh, S., Duchesne, C., Rodrigue, D. Effect of annealing on gas permeability and mechanical properties of polylactic acid/talc composite films. J. Plastic Film Sheeting 2017, 33, 361–383; https://doi.org/10.1177/8756087917694618.Search in Google Scholar

29. Segura González, E. A., Olmos, D., González‐Gaitano, G., Orgaz, B., González‐Benito, J. Effect of kaolin nanofiller and processing conditions on the structure, morphology, and biofilm development of polylactic acid. J. Appl. Polym. Sci. 2015, 132, 42676; https://doi.org/10.1002/app.42676.Search in Google Scholar

30. Wang, H., Dong, Y., Zhu, M., Li, X., Keller, A. A., Wang, T., Li, F. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res. 2015, 80, 130–138; https://doi.org/10.1016/j.watres.2015.05.023.Search in Google Scholar PubMed

31. Leong, Y., Bakar, M., Ishak, Z., Ariffin, A., Pukanszky, B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2004, 91, 3315–3326; https://doi.org/10.1002/app.13542.Search in Google Scholar

32. Zhang, Z., Ge, X., Zhang, B. Effects of different silane coupling agents on structure and properties of starch–chitosan–kaolin composites. J. Appl. Polym. Sci. 2019, 136, 48050; https://doi.org/10.1002/app.48050.Search in Google Scholar

33. Osman, M., Atallah, A., Suter, U. Influence of excessive filler coating on the tensile properties of LDPE-calcium carbonate composites. Polymer 2004, 45, 1177–1183; https://doi.org/10.1016/j.polymer.2003.12.020.Search in Google Scholar

34. Sabzi, M., Jiang, L., Atai, M., Ghasemi, I. PLA/sepiolite and PLA/calcium carbonate nanocomposites: a comparison study. J. Appl. Polym. Sci. 2013, 129, 1734–1744; https://doi.org/10.1002/app.38866.Search in Google Scholar

35. Sitthi, D., Damian, S., Karnik, T., Jim, S. Effect of calcium carbonate on crystallization behavior and morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Key Eng. Mater. 2017, 751, 242–251.10.4028/www.scientific.net/KEM.751.242Search in Google Scholar

36. Rocha, D., Souza de Carvalho, J., de Oliveira, S., dos Santos Rosa, D. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018, 135, 46660; https://doi.org/10.1002/app.46660.Search in Google Scholar

37. Carli, L., Crespo, J., Mauler, R. PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Composites Part A 2011, 42, 1601–1608; https://doi.org/10.1016/j.compositesa.2011.07.007.Search in Google Scholar

38. Shan, G., Gong, X., Chen, W., Chen, L., Zhu, M. Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polym. Sci. 2011, 289, 1005–1014; https://doi.org/10.1007/s00396-011-2412-1.Search in Google Scholar

39. Aliotta, L., Cinelli, P., Coltelli, M., Lazzeri, A. Rigid filler toughening in PLA-calcium carbonate composites: effect of particle surface treatment and matrix plasticization. Eur. Polym. J. 2019, 113, 78–88; https://doi.org/10.1016/j.eurpolymj.2018.12.042.Search in Google Scholar

40. Nunes, E. C. D., Souza, A. G., Coiado, R. D. S., Moura, E. A. B., Rosa, D. S. Evaluation of the poly(lactic acid) and calcium carbonate effects on the mechanical and morphological properties in PBAT blends and composites. IJISET Int. J. Innov. Sci. Eng. Technol. 2017, 2348, 313–318.Search in Google Scholar

41. Liu, X., Wang, T., Chow, L. C., Yang, M., Mitchell, J. W. Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid). Int. J. Polym. Sci. 2014, 2014, 827028/1–827028/8; https://doi.org/10.1155/2014/827028.Search in Google Scholar PubMed PubMed Central

42. Buzarovska, A., Bogoeva-Gaceva, G., Fajgar, R. Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly(lactic acid) composites. J. Polym. Eng. 2016, 36, 181–188; https://doi.org/10.1515/polyeng-2015-0014.Search in Google Scholar

43. Ouchiar, S., Stoclet, G., Cabaret, C., Georges, E., Smith, A., Martias, C., Addad, A., Gloaguen, V. Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Appl. Clay Sci. 2015, 116–117, 231–241; https://doi.org/10.1016/j.clay.2015.03.020.Search in Google Scholar

44. Kai, W., He, Y., Inoue, Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-\+i\co\-i\-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym. Int. 2005, 54, 780–789; https://doi.org/10.1002/pi.1758.Search in Google Scholar

45. Osswald, T. A., Menges, G. Material Science of Polymers for Engineers, 3rd ed.; Hanser Publishers: Munich, Germany, 2012.10.3139/9781569905241Search in Google Scholar

46. Giles, H. F., Wagner, J. R., Mount, E. M. Extrusion: The Definitive Processing Guide and Handbook; William Andrew Pub: Norwich, NY, 2005.Search in Google Scholar

47. Balani, K., Verma, V., Agarwal, A., Narayan, R. A Materials Science and Engineering Perspective; Wiley: Hoboken, NJ, 2015.Search in Google Scholar

48. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P., Hristova-Bogaerds, D. Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J. Polym. Sci. Part B: Polym. Phys. 2009, 47, 2247–2258; https://doi.org/10.1002/polb.21822.Search in Google Scholar

49. Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., Giménez, E. Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol. Symp. 2006, 233, 191–197; https://doi.org/10.1002/masy.200690017.Search in Google Scholar

50. Whaling, A., Bhardwaj, R., Mohanty, A. Novel talc-filled biodegradable bacterial polyester composites. Ind. Eng. Chem. Res. 2006, 45, 7497–7503; https://doi.org/10.1021/ie060604x.Search in Google Scholar

51. Welker, M., Knerr, M., Schulz, K. Omya Smartfill® Opens New Opportunities for the Use of Polylactic Acid. https://www.omya.com/Documents/Packaging/Smartfill/Whitepaper_Smartfill_Omya.pdf (accessed Jan 25, 2021).Search in Google Scholar

52. Humbert, S., Lame, O., Seguela, R., Vigier, G. A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polymer 2011, 52, 4899–4909; https://doi.org/10.1016/j.polymer.2011.07.060.Search in Google Scholar

53. Ahmed, S. Bio-Based Materials for Food Packaging: Green and Sustainable Advanced Packaging Materials; Springer: Singapore, 2018.10.1007/978-981-13-1909-9Search in Google Scholar

54. Courgneau, C., Domenek, S., Lebosse, R., Guinault, A., Averous, L., Ducruet, V. Effect of crystallization on barrier properties of formulated polylactide. Polym. Int. 2012, 61, 180–189; https://doi.org/10.1002/pi.3167.Search in Google Scholar

55. Gorrasi, G., Pantani, R., Murariu, M., Dubois, P. PLA/halloysite nanocomposite films: water vapor barrier properties and specific key characteristics. Macromol. Mater. Eng. 2014, 299, 104–115; https://doi.org/10.1002/mame.201200424.Search in Google Scholar

56. Girdthep, S., Worajittiphon, P., Molloy, R., Lumyong, S., Leejarkpai, T., Punyodom, W. Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: a route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer 2014, 55, 6776–6788; https://doi.org/10.1016/j.polymer.2014.10.066.Search in Google Scholar

57. Calderaro, M., Saraiva Sanchez, E., Morales, A. PBAT/hybrid nanofillers composites—part 1: oxygen and water vapor permeabilities, UV barrier and mechanical properties. J. Appl. Polym. Sci. 2020, 137, 49522; https://doi.org/10.1002/app.49522.Search in Google Scholar

58. Li, J., Lai, L., Wu, L., Severtson, S., Wang, W. Enhancement of water vapor barrier properties of biodegradable poly(butylene adipate-co-terephthalate) films with highly oriented organomontmorillonite. ACS Sustain. Chem. Eng. 2018A, 6, 6654–6662; https://doi.org/10.1021/acssuschemeng.8b00430.Search in Google Scholar

59. Farmahini-Farahani, M., Xiao, H., Khan, A., Pan, Y., Yang, Y. Preparation and characterization of exfoliated PHBV nanocomposites to enhance water vapor barriers of calendared paper. Ind. Eng. Chem. Res. 2015, 54, 11277–11284; https://doi.org/10.1021/acs.iecr.5b02734.Search in Google Scholar

60. Jain, S., Reddy, M., Mohanty, A., Misra, M., Ghosh, A. A new biodegradable flexible composite sheet from poly(lactic acid)/poly(delta *e-caprolactone) blends and micro-talc. Macromol. Mater. Eng. 2010, 295, 750–762; https://doi.org/10.1002/mame.201000063.Search in Google Scholar

61. Marsh, K., Bugusu, B. Food packaging—roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55; https://doi.org/10.1111/j.1750-3841.2007.00301.x.Search in Google Scholar PubMed

62. Aliotta, L., Vannozzi, A., Panariello, L., Gigante, V., Coltelli, M. B., Lazzeri, A. Sustainable micro and nano additives for controlling the migration of a biobased plasticizer from PLA-based flexible films. Polymers 2020, 12, 1366; https://doi.org/10.3390/polym12061366.Search in Google Scholar PubMed PubMed Central

63. Hongdilokkul, P., Keeratipinit, K., Chawthai, S., Hararak, B., Seadan, M., Suttiruengwong, S. A study on properties of pla/pbat from blown film process. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, 012112; https://doi.org/10.1088/1757-899x/87/1/012112.Search in Google Scholar

64. Javadi, A., Kramschuster, A., Pilla, S., Lee, J., Gong, S., Turng, L. Processing and characterization of microcellular PHBV/PBAT blends. Polym. Eng. Sci. 2010, 50, 1440–1448; https://doi.org/10.1002/pen.21661.Search in Google Scholar

65. Pal, A. K., Wu, F., Misra, M., Mohanty, A. K. Reactive extrusion of sustainable PHBV/PBAT-based nanocomposite films with organically modified nanoclay for packaging applications: compression moulding vs. cast film extrusion. Composites Part B 2020, 198, 108141; https://doi.org/10.1016/j.compositesb.2020.108141.Search in Google Scholar

66. Pawar, S., Misra, A., Bose, S., Chatterjee, K., Mittal, V. Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym. Sci. 2015, 293, 2921–2930; https://doi.org/10.1007/s00396-015-3700-y.Search in Google Scholar

Received: 2021-03-10
Accepted: 2021-06-22
Published Online: 2021-08-10
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0076/html
Scroll to top button