Abstract
We compared the performance of bio-based and biodegradable polymers for packaging applications. Cost-effective inorganic fillers (talc, kaolin and calcium carbonate) were first melt-compounded with polylactic acid (PLA), poly(butylene adipate-co-terephthalate) (PBAT) and poly(hydroxy butyrate-co-valerate) (PHBV). Following this, injection- and compression-molded specimens were produced to test the effect of filler loading (0–30 wt%) in relation to the morphological, thermal, mechanical and barrier properties of the composites. All the fillers were homogeneously dispersed in the polymer matrices and suitable polymer–filler adhesion was observed for talc and kaolin. The elastic modulus increased at the expense of a reduced tensile and elongation. The most significant improvements in water vapor and oxygen barrier properties were achieved with talc in PLA, PBAT and PHBV films. Overall, the results point to the promise of the introduced compositions for food packaging materials.
Acknowledgements
We wish to thank the assistance of Sai Li with the sample preparation, Päivi Kauppinen with the SEM imaging, Tuula Rautiainen with the WVTR analyzes and Säde Mäki (Tampere University) for conducting the oxygen barrier measurements.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bordes, P., Pollet, E., Averous, L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 2009, 34, 125–155; https://doi.org/10.1016/j.progpolymsci.2008.10.002.Suche in Google Scholar
2. Leminen, V., Ovaska, S.-S., Tanninen, P., Varis, J. Convertability and oil resistance of paperboard with hydroxypropyl-cellulose-based dispersion barrier coatings. J. Appl. Packag. Res. 2015, 7, 91–100.Suche in Google Scholar
3. Plastics Europe. An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed Nov 16, 2020).Suche in Google Scholar
4. Helanto, K., Matikainen, L., Talja, R., Rojas, O. Bio-based polymers for sustainable packaging and biobarriers: a critical review. BioResources 2019, 14, 4902–4951.10.15376/biores.14.2.HelantoSuche in Google Scholar
5. Cui, Y., Kumar, S., Rao Kona, B., Van Houcke, D. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2015, 5, 63669–63690; https://doi.org/10.1039/c5ra10333a.Suche in Google Scholar
6. Chutimar, D., Chavakorn, S., Suphattra, C. Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran. Polym. J. 2020, 29, 103–116.10.1007/s13726-019-00778-4Suche in Google Scholar
7. Helanto, K., Talja, R., Rojas, O. J. J. Appl. Polym. Sci. 2021, 138, e51225; https://doi.org/10.1002/app.51225.Suche in Google Scholar
8. Khuenkeao, T., Petchwattana, N., Covavisaruch, S. Thermal and mechanical properties of bioplastic poly(lactic acid) compounded with silicone rubber and talc. AIP Conf. Proc. 2016, 1713, 080005; https://doi.org/10.1063/1.4942294.Suche in Google Scholar
9. Li, X., Pan, H., Yang, J., Gao, G., Zhang, H., Yang, H., Dong, L. The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender. Polym. Adv. Technol. 2018, 29, 1706–1717; https://doi.org/10.1002/pat.4274.Suche in Google Scholar
10. Phetwarotai, W., Aht-Ong, D. Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc. J. Therm. Anal. Calorim. 2016, 126, 1797–1808; https://doi.org/10.1007/s10973-016-5669-2.Suche in Google Scholar
11. Piekarska, K., Piorkowska, E., Bojda, J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym. Test. 2017, 62, 203–209; https://doi.org/10.1016/j.polymertesting.2017.06.025.Suche in Google Scholar
12. Qiu, S., Zhou, Y., Waterhouse, G. I. N., Gong, R., Xie, J., Zhang, K., Xu, J. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. 2021, 334, 127487; https://doi.org/10.1016/j.foodchem.2020.127487.Suche in Google Scholar PubMed
13. Wang, L., Rhim, J., Hong, S. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT Food Sci. Technol. 2016, 68, 454–461; https://doi.org/10.1016/j.lwt.2015.12.062.Suche in Google Scholar
14. Chivrac, F., Kadlecová, Z., Pollet, E., Avérous, L. Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J. Polym. Environ. 2006, 14, 393–401; https://doi.org/10.1007/s10924-006-0033-4.Suche in Google Scholar
15. Moustafa, H., Guizani, C., Dufresne, A. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 2017, 134, 44498; https://doi.org/10.1002/app.44498.Suche in Google Scholar
16. Musioł, M., Sikorska, W., Janeczek, H., Wałach, W., Hercog, A., Johnston, B., Rydz, J. (Bio)degradable polymeric materials for a sustainable future – part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life. Waste Manag. 2018, 77, 447–454.10.1016/j.wasman.2018.04.030Suche in Google Scholar PubMed
17. Venkatesan, R., Rajeswari, N., Tamilselvi, A. Antimicrobial, mechanical, barrier, and thermal properties of bio-based poly(butylene adipate-co-terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application. Polym. Adv. Technol. 2017, 29, 61–68; https://doi.org/10.1002/pat.4089.Suche in Google Scholar
18. Bastarrachea, L., Dhawan, S., Sablani, S. S., Mah, J., Kang, D., Zhang, J., Tang, J. Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with Nisin: characterization and effectiveness against Listeria innocua. J. Food Sci. 2010, 75, E215–E224; https://doi.org/10.1111/j.1750-3841.2010.01591.x.Suche in Google Scholar PubMed
19. Cunha, M., Fernandes, B., Covas, J., Vicente, A., Hilliou, L. Film blowing of PHBV blends and PHBV-based multilayers for the production of biodegradable packages. J. Appl. Polym. Sci. 2016, 133, 42633; https://doi.org/10.1002/app.42165.Suche in Google Scholar
20. Kirboga, S., Öner, M. Oxygen barrier and thermomechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites reinforced with calcium carbonate particles. Acta Chim. Slov. 2020, 67, 137–150; https://doi.org/10.17344/acsi.2019.5291.Suche in Google Scholar
21. Duangphet, S., Szegda, D., Song, J. Effect of calcium carbonate on crystallization behavior and morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Key Eng. Mater. 2017, 751, 242–251; https://doi.org/10.4028/www.scientific.net/kem.751.242.Suche in Google Scholar
22. da Costa, R. C., Daitx, T. S., Mauler, R. S., da Silva, N. M., Miotto, M., Crespo, J. S., Carli, L. N. Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packag. Shelf Life 2020, 26, 100602; https://doi.org/10.1016/j.fpsl.2020.100602.Suche in Google Scholar
23. Hasan, S. K., Zainuddin, S., Tanthongsack, J., Hosur, M., Allen, L. A study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biofilms’ thermal and biodegradable properties reinforced with halloysite nanotubes. J. Compos. Mater. 2018, 52, 3199–3207; https://doi.org/10.1177/0021998318763246.Suche in Google Scholar
24. Jain, S., Misra, M., Mohanty, A., Ghosh, A. Thermal, mechanical and rheological behavior of poly(lactic acid)/talc composites. J. Polym. Environ. 2012, 20, 1027–1037; https://doi.org/10.1007/s10924-012-0500-z.Suche in Google Scholar
25. Raquez, J., Nabar, Y., Narayan, R., Dubois, P. Novel high-performance talc/poly[(butylene adipate)-co-terephthalate] hybrid materials. Macromol. Mater. Eng. 2008, 293, 310–320; https://doi.org/10.1002/mame.200700352.Suche in Google Scholar
26. Zuiderduin, W., Westzaan, C., Huetink, J., Gaymans, R. Toughening of polypropylene with calcium carbonate particles. Polymer 2003, 44, 261–275; https://doi.org/10.1016/s0032-3861(02)00769-3.Suche in Google Scholar
27. Yu, F., Liu, T., Zhao, X., Yu, X., Lu, A., Wang, J. Effects of talc on the mechanical and thermal properties of polylactide. J. Appl. Polym. Sci. 2012, 125, E99–E109; https://doi.org/10.1002/app.36260.Suche in Google Scholar
28. Ghassemi, A., Moghaddamzadeh, S., Duchesne, C., Rodrigue, D. Effect of annealing on gas permeability and mechanical properties of polylactic acid/talc composite films. J. Plastic Film Sheeting 2017, 33, 361–383; https://doi.org/10.1177/8756087917694618.Suche in Google Scholar
29. Segura González, E. A., Olmos, D., González‐Gaitano, G., Orgaz, B., González‐Benito, J. Effect of kaolin nanofiller and processing conditions on the structure, morphology, and biofilm development of polylactic acid. J. Appl. Polym. Sci. 2015, 132, 42676; https://doi.org/10.1002/app.42676.Suche in Google Scholar
30. Wang, H., Dong, Y., Zhu, M., Li, X., Keller, A. A., Wang, T., Li, F. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res. 2015, 80, 130–138; https://doi.org/10.1016/j.watres.2015.05.023.Suche in Google Scholar PubMed
31. Leong, Y., Bakar, M., Ishak, Z., Ariffin, A., Pukanszky, B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2004, 91, 3315–3326; https://doi.org/10.1002/app.13542.Suche in Google Scholar
32. Zhang, Z., Ge, X., Zhang, B. Effects of different silane coupling agents on structure and properties of starch–chitosan–kaolin composites. J. Appl. Polym. Sci. 2019, 136, 48050; https://doi.org/10.1002/app.48050.Suche in Google Scholar
33. Osman, M., Atallah, A., Suter, U. Influence of excessive filler coating on the tensile properties of LDPE-calcium carbonate composites. Polymer 2004, 45, 1177–1183; https://doi.org/10.1016/j.polymer.2003.12.020.Suche in Google Scholar
34. Sabzi, M., Jiang, L., Atai, M., Ghasemi, I. PLA/sepiolite and PLA/calcium carbonate nanocomposites: a comparison study. J. Appl. Polym. Sci. 2013, 129, 1734–1744; https://doi.org/10.1002/app.38866.Suche in Google Scholar
35. Sitthi, D., Damian, S., Karnik, T., Jim, S. Effect of calcium carbonate on crystallization behavior and morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Key Eng. Mater. 2017, 751, 242–251.10.4028/www.scientific.net/KEM.751.242Suche in Google Scholar
36. Rocha, D., Souza de Carvalho, J., de Oliveira, S., dos Santos Rosa, D. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018, 135, 46660; https://doi.org/10.1002/app.46660.Suche in Google Scholar
37. Carli, L., Crespo, J., Mauler, R. PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Composites Part A 2011, 42, 1601–1608; https://doi.org/10.1016/j.compositesa.2011.07.007.Suche in Google Scholar
38. Shan, G., Gong, X., Chen, W., Chen, L., Zhu, M. Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polym. Sci. 2011, 289, 1005–1014; https://doi.org/10.1007/s00396-011-2412-1.Suche in Google Scholar
39. Aliotta, L., Cinelli, P., Coltelli, M., Lazzeri, A. Rigid filler toughening in PLA-calcium carbonate composites: effect of particle surface treatment and matrix plasticization. Eur. Polym. J. 2019, 113, 78–88; https://doi.org/10.1016/j.eurpolymj.2018.12.042.Suche in Google Scholar
40. Nunes, E. C. D., Souza, A. G., Coiado, R. D. S., Moura, E. A. B., Rosa, D. S. Evaluation of the poly(lactic acid) and calcium carbonate effects on the mechanical and morphological properties in PBAT blends and composites. IJISET Int. J. Innov. Sci. Eng. Technol. 2017, 2348, 313–318.Suche in Google Scholar
41. Liu, X., Wang, T., Chow, L. C., Yang, M., Mitchell, J. W. Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid). Int. J. Polym. Sci. 2014, 2014, 827028/1–827028/8; https://doi.org/10.1155/2014/827028.Suche in Google Scholar PubMed PubMed Central
42. Buzarovska, A., Bogoeva-Gaceva, G., Fajgar, R. Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly(lactic acid) composites. J. Polym. Eng. 2016, 36, 181–188; https://doi.org/10.1515/polyeng-2015-0014.Suche in Google Scholar
43. Ouchiar, S., Stoclet, G., Cabaret, C., Georges, E., Smith, A., Martias, C., Addad, A., Gloaguen, V. Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Appl. Clay Sci. 2015, 116–117, 231–241; https://doi.org/10.1016/j.clay.2015.03.020.Suche in Google Scholar
44. Kai, W., He, Y., Inoue, Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-\+i\co\-i\-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym. Int. 2005, 54, 780–789; https://doi.org/10.1002/pi.1758.Suche in Google Scholar
45. Osswald, T. A., Menges, G. Material Science of Polymers for Engineers, 3rd ed.; Hanser Publishers: Munich, Germany, 2012.10.3139/9781569905241Suche in Google Scholar
46. Giles, H. F., Wagner, J. R., Mount, E. M. Extrusion: The Definitive Processing Guide and Handbook; William Andrew Pub: Norwich, NY, 2005.Suche in Google Scholar
47. Balani, K., Verma, V., Agarwal, A., Narayan, R. A Materials Science and Engineering Perspective; Wiley: Hoboken, NJ, 2015.Suche in Google Scholar
48. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P., Hristova-Bogaerds, D. Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J. Polym. Sci. Part B: Polym. Phys. 2009, 47, 2247–2258; https://doi.org/10.1002/polb.21822.Suche in Google Scholar
49. Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., Giménez, E. Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol. Symp. 2006, 233, 191–197; https://doi.org/10.1002/masy.200690017.Suche in Google Scholar
50. Whaling, A., Bhardwaj, R., Mohanty, A. Novel talc-filled biodegradable bacterial polyester composites. Ind. Eng. Chem. Res. 2006, 45, 7497–7503; https://doi.org/10.1021/ie060604x.Suche in Google Scholar
51. Welker, M., Knerr, M., Schulz, K. Omya Smartfill® Opens New Opportunities for the Use of Polylactic Acid. https://www.omya.com/Documents/Packaging/Smartfill/Whitepaper_Smartfill_Omya.pdf (accessed Jan 25, 2021).Suche in Google Scholar
52. Humbert, S., Lame, O., Seguela, R., Vigier, G. A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polymer 2011, 52, 4899–4909; https://doi.org/10.1016/j.polymer.2011.07.060.Suche in Google Scholar
53. Ahmed, S. Bio-Based Materials for Food Packaging: Green and Sustainable Advanced Packaging Materials; Springer: Singapore, 2018.10.1007/978-981-13-1909-9Suche in Google Scholar
54. Courgneau, C., Domenek, S., Lebosse, R., Guinault, A., Averous, L., Ducruet, V. Effect of crystallization on barrier properties of formulated polylactide. Polym. Int. 2012, 61, 180–189; https://doi.org/10.1002/pi.3167.Suche in Google Scholar
55. Gorrasi, G., Pantani, R., Murariu, M., Dubois, P. PLA/halloysite nanocomposite films: water vapor barrier properties and specific key characteristics. Macromol. Mater. Eng. 2014, 299, 104–115; https://doi.org/10.1002/mame.201200424.Suche in Google Scholar
56. Girdthep, S., Worajittiphon, P., Molloy, R., Lumyong, S., Leejarkpai, T., Punyodom, W. Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: a route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer 2014, 55, 6776–6788; https://doi.org/10.1016/j.polymer.2014.10.066.Suche in Google Scholar
57. Calderaro, M., Saraiva Sanchez, E., Morales, A. PBAT/hybrid nanofillers composites—part 1: oxygen and water vapor permeabilities, UV barrier and mechanical properties. J. Appl. Polym. Sci. 2020, 137, 49522; https://doi.org/10.1002/app.49522.Suche in Google Scholar
58. Li, J., Lai, L., Wu, L., Severtson, S., Wang, W. Enhancement of water vapor barrier properties of biodegradable poly(butylene adipate-co-terephthalate) films with highly oriented organomontmorillonite. ACS Sustain. Chem. Eng. 2018A, 6, 6654–6662; https://doi.org/10.1021/acssuschemeng.8b00430.Suche in Google Scholar
59. Farmahini-Farahani, M., Xiao, H., Khan, A., Pan, Y., Yang, Y. Preparation and characterization of exfoliated PHBV nanocomposites to enhance water vapor barriers of calendared paper. Ind. Eng. Chem. Res. 2015, 54, 11277–11284; https://doi.org/10.1021/acs.iecr.5b02734.Suche in Google Scholar
60. Jain, S., Reddy, M., Mohanty, A., Misra, M., Ghosh, A. A new biodegradable flexible composite sheet from poly(lactic acid)/poly(delta *e-caprolactone) blends and micro-talc. Macromol. Mater. Eng. 2010, 295, 750–762; https://doi.org/10.1002/mame.201000063.Suche in Google Scholar
61. Marsh, K., Bugusu, B. Food packaging—roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55; https://doi.org/10.1111/j.1750-3841.2007.00301.x.Suche in Google Scholar PubMed
62. Aliotta, L., Vannozzi, A., Panariello, L., Gigante, V., Coltelli, M. B., Lazzeri, A. Sustainable micro and nano additives for controlling the migration of a biobased plasticizer from PLA-based flexible films. Polymers 2020, 12, 1366; https://doi.org/10.3390/polym12061366.Suche in Google Scholar PubMed PubMed Central
63. Hongdilokkul, P., Keeratipinit, K., Chawthai, S., Hararak, B., Seadan, M., Suttiruengwong, S. A study on properties of pla/pbat from blown film process. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, 012112; https://doi.org/10.1088/1757-899x/87/1/012112.Suche in Google Scholar
64. Javadi, A., Kramschuster, A., Pilla, S., Lee, J., Gong, S., Turng, L. Processing and characterization of microcellular PHBV/PBAT blends. Polym. Eng. Sci. 2010, 50, 1440–1448; https://doi.org/10.1002/pen.21661.Suche in Google Scholar
65. Pal, A. K., Wu, F., Misra, M., Mohanty, A. K. Reactive extrusion of sustainable PHBV/PBAT-based nanocomposite films with organically modified nanoclay for packaging applications: compression moulding vs. cast film extrusion. Composites Part B 2020, 198, 108141; https://doi.org/10.1016/j.compositesb.2020.108141.Suche in Google Scholar
66. Pawar, S., Misra, A., Bose, S., Chatterjee, K., Mittal, V. Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym. Sci. 2015, 293, 2921–2930; https://doi.org/10.1007/s00396-015-3700-y.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity