Home Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
Article
Licensed
Unlicensed Requires Authentication

Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications

  • Victor Ekene Ogbonna EMAIL logo , A. Patricia I. Popoola , Olawale M. Popoola and Samson O. Adeosun
Published/Copyright: August 23, 2021
Become an author with De Gruyter Brill

Abstract

The adoption of polymer nanocomposites in the design/manufacturing of parts for engineering and technological applications showcases their outstanding properties. Among the polymer nanocomposites, polyimide (PI) nanocomposites have attracted much attention as a composite material capable of withstanding mechanical, thermal and electrical stresses, hence engineered for use in harsh environments. However, the nanocomposites are limited to the application area that demands conduction polymer and polymer composites due to the low electrical conductivity of PI. Although, there has been advancement in improving the mechanical, thermal and electrical properties of PI nanocomposites. Thus, the review focuses on recent progress on improving the mechanical, thermal and electrical conductivity properties of PI nanocomposites via the incorporation of carbon nanotubes (CNTs), graphene and graphene oxide (GO) fillers into the PI matrix. The review summarises the influence of CNTs, graphene and GO on the mechanical and conductivity properties of PI nanocomposites. The authors ended the review with advancement, challenges and recommendations for future improvement of PI reinforced conductive nanofillers composites. Therefore, the review study proffers an understanding of the improvement and selection of PI nanocomposites material for mechanical, thermal and electrical conductivity applications. Additionally, in the area of conductive polymer nanocomposites, this review will also pave way for future study.


Corresponding author: Victor Ekene Ogbonna, Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology, P.M.B X680, Pretoria, South Africa, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors wish to thank the Centre for Energy and Electric Power, Tshwane University of Technology (TUT) South Africa for financial support in the course of this study.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Lai, R., Rathore, B. S., Gaur, M. S. Structural and polarization properties of polyimide/TiO2 nanocomposites. Ionics 2012, 18, 565–572.10.1007/s11581-011-0649-9Search in Google Scholar

2. Adanur, S., Zheng, H. Synthesis and characterization of sulfonated polyimide based membranes for proton exchange membrane fuel cells. J. Fuel Cell Sci. Technol. 2013, 10, 1–5; https://doi.org/10.1115/1.4024564.Search in Google Scholar

3. Zhou, J., Sun, K., Huang, S., He, X., Cai, W., Zhao, Y., Li, W. Facile fabrication of polyimide-alumina composite coatings by liquid flame spray. Coatings 2020, 10, 857; https://doi.org/10.3390/coatings10090857.Search in Google Scholar

4. Zhou, Y., Chen, Y., Wang, H., Wong, C. P. Creation of a multilayer aluminum coating structure nanoparticles polyimide filler for electronic applications. Mater. Lett. 2014, 119, 64–67; https://doi.org/10.1016/j.matlet.2014.01.009.Search in Google Scholar

5. Gouzman, I., Grossman, E., Verker, R., Atar, N., Bolker, A., Eliaz, N. Advances in polyimide-based materials for space applications. Adv. Mater. 2019, 31, 1807738; https://doi.org/10.1002/adma.201807738.Search in Google Scholar PubMed

6. Eiichi, S., Nitto, D. Corporation applications of polyimide films to the electrical and electronic industries in Japan. IEEE Electr. Insul. Mag. 1989, 5, 15–23.10.1109/57.16949Search in Google Scholar

7. Ayesha, K. Holistic insights on polyimide nanocomposite nanofiber. Polym. Plast. Technol. Mater. 2020, 59, 1621–1639.10.1080/25740881.2020.1759635Search in Google Scholar

8. Monsef, K., Homayoonfal, M., Davar, F. Engineering arrangement of nanoparticles within nanocomposite membranes matrix: a suggested way to enhance water flux. Polym. Plast. Technol. Mater. 2020, 59, 733–752; https://doi.org/10.1080/25740881.2019.1695264.Search in Google Scholar

9. Zha, J.-W., Liu, X.-J., Tian, Y., Dang, Z.-M., Chen, G. High-Temperature Polyimide Dielectric Materials for Energy Storage, Polyimide for Electronic and Electrical Engineering Applications; Intech Open: UK, 2020.10.5772/intechopen.92260Search in Google Scholar

10. Gao, X.-Y., Zhou, Y., Cao, Y., Chong, L., Ding, W., Choi, H., Won, J. A copper/polyimide fabrication process for fabricating high-inductance microinductor. IEEE Trans. Electron. Packag. Manuf. 2007, 30, 123–127; https://doi.org/10.1109/tepm.2007.899134.Search in Google Scholar

11. Takakazu, M., Naoki, K., Yasutaka, N., Tsuyoshi, A., Tomohiro, K., Yusuke, N., Masahiro, K., Masayuki, K., Nobutaka, F., Noriyuki, H., Shohei, F., Toshihiko, K Dielectric and insulation properties of polyimide based boehmite nanocomposite material. In Electrical Insulation Conference (EIC); IEEE: Calgary, Alberta, Canada, 2019.Search in Google Scholar

12. Chen, M., Zhou, W., Zhang, J., Chen, Q. Dielectric property and space charge behavior of polyimide/silicon nitride nanocomposite films. Polymers 2020, 12, 322; https://doi.org/10.3390/polym12020322.Search in Google Scholar PubMed PubMed Central

13. Li, M. K., Fan, M. W., Zhang, Y. F., Liang, H., Yang, L., Yu, T. Q., Yang, J., Huang, J., Fan, K. J., Xiong, Y. Q., Qi, W., Zuo, C., Zhang, L. G., Liu, T A novel design of insulated core transformer high voltage power supply. In Proceedings of RuPAC2016; JACoW: St. Petersburg, Russia, 2016.Search in Google Scholar

14. Rusu, R.-D., Constantin, C.-P., Drobota, M., Gradinaru, L.-M., Butnaru, M., Pislaru, M. Polyimide films tailored by UV irradiation: surface evaluation and structure-properties relationship. Polym. Degrad. Stabil. 2020, 177, 109182; https://doi.org/10.1016/j.polymdegradstab.2020.109182.Search in Google Scholar

15. Smith, J. G., Connell, J. W., Delozier, D. M., Lillehei, P. T., Waston, K. A., Lin, Y., Zhou, B., Sun, Y.-P. Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymers 2004, 45, 825–836; https://doi.org/10.1016/j.polymer.2003.11.024.Search in Google Scholar

16. Smith, J. G., Delozier, D. M., Connell, J. W., Waston, K. A. Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymers 2004, 45, 6133–6142; https://doi.org/10.1016/j.polymer.2004.07.004.Search in Google Scholar

17. Ounaies, Z. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 2003, 63, 1637–1646; https://doi.org/10.1016/s0266-3538(03)00067-8.Search in Google Scholar

18. Izzati, W. A., Arief, Y. Z., Adzis, Z., Shafanizam, M. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends. Sci. World J. 2014, 2014, 1–14; https://doi.org/10.1155/2014/735070.Search in Google Scholar PubMed PubMed Central

19. Shen, Y., Lin, H., Nan, C. W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell - structured particles. Adv. Funct. Mater. 2007, 17, 2405–2410; https://doi.org/10.1002/adfm.200700200.Search in Google Scholar

20. Song, Z., Zhan, H., Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. 2010, 49, 8444–8448; https://doi.org/10.1002/anie.201002439.Search in Google Scholar PubMed

21. Yoonessi, M., Shi Y Scheiman, D. A., Lebron-Colon, M., Tigelaar, D. M., Weiss, R. A., Meador, M. A. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 2012, 6, 7644–7655; https://doi.org/10.1021/nn302871y.Search in Google Scholar PubMed

22. Wilson, D., Stenzenberger, H. D., Hergenrother, P. M. Polyimides; Springer: Berlin, Germany, 1990.10.1007/978-94-010-9661-4Search in Google Scholar

23. Thuau, D., Koutsos, V., Cheung, R. Electrical and mechanical properties of carbon nanotube-polyimide composites. J. Vac. Sci. Technol. B 2009, 27, 3139–3144; https://doi.org/10.1116/1.3250192.25 and 86.Search in Google Scholar

24. Ha, H. W., Choudhury, A., Kamal, T., Kim, D.-H., Park, S.-Y. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl. Mater. Interfaces 2012, 4, 4623–4630; https://doi.org/10.1021/am300999g.Search in Google Scholar

25. Li, T.-L., Hsu, S. L.-C. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J. Phys. Chem. B 2010, 114, 6825–6829; https://doi.org/10.1021/jp101857w.Search in Google Scholar

26. MacDermott, C. Selecting Thermoplastic for Engineering Applications; Marcel Dekker: Reinhold, USA, 1994.Search in Google Scholar

27. Mathews, A. S., Kim, I., Ha, C. S. Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol. Res. 2007, 15, 114–128; https://doi.org/10.1007/bf03218762.Search in Google Scholar

28. Li, X.-D., Zhong, Z.-X., Jin, G., Lee, S. H., Lee, M.-H. Liquid crystal photoalignment by soluble photosensitive polyimide with methylene cinnamate side units. Macromol. Res. 2006, 14, 257–260; https://doi.org/10.1007/bf03219080.Search in Google Scholar

29. Wahab, M. A., Kim, I., Ha, C.-S. Microstructure and properties of polyimide/poly (vinylsilsesquioxane) hybrid composite films. Polymers 2003, 44, 4705–4713; https://doi.org/10.1016/s0032-3861(03)00429-4.Search in Google Scholar

30. Anton, G., Dean, D., Erinche, S., Jacob, A., Peter, D., Grencho, D. Chemical and Physical Properties of Polyimides: Biomedical and Engineering Applications; IntechOpen: UK, 2012.Search in Google Scholar

31. Xu, Y., Chen, C., Li, J. Experimental study on physical properties and pervaporation performances of polyimide membranes. Chem. Eng. Sci. 2007, 62, 2466–2473; https://doi.org/10.1016/j.ces.2007.01.019.Search in Google Scholar

32. Yang, H., Liu, J., Ji, M., Yang, S. Novel thermoplastic polyimide composite materials; Intech Open: UK, 2012; pp. 1–12.10.5772/34945Search in Google Scholar

33. Dianham, S., Locatelli, M., Khazaka, R. BPDA-PDA Polyimide: synthesis, characterizations, aging and semiconductor device passivation In High Performance Polymers-Polyimides Based – From Chemistry to Application; Abadie, M. J. M., Ed.; IntechOpen: UK, 2012.10.5772/53994Search in Google Scholar

34. Kreisler, S. Y. L. High-Performance Polyimides and High Temperature Resistant Polymers. Handbook of Thermoset Plastics, 3rd ed.; William Andrew: San Diego, USA, 2014; pp. 297–424.10.1016/B978-1-4557-3107-7.00010-5Search in Google Scholar

35. Ree, M. High performance polyimides for applications in microelectronics and flat panel display. Macromol. Res. 2006, 14, 1–33; https://doi.org/10.1007/bf03219064.Search in Google Scholar

36. Ha, C. S., Mathews, A. S. Polyimides and high performance organic polymers. In Advanced Functional Materials; Springer: Berlin, Heidelberg, 2011.10.1007/978-3-642-19077-3_1Search in Google Scholar

37. Mouritz, P., Gibson, A. G. In Fire Properties of Polymer Composite Materials; Springer: Dordrecht, 2006; pp 394.Search in Google Scholar

38. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58; https://doi.org/10.1038/354056a0.Search in Google Scholar

39. Ujah, C. O., Popoola, P., Popoola, O., Ajenifuja, E. Effect of CNTs on the tribology and thermal behaviours of al nano-powder fabricated with SPS for industrial application. In Conference on Diversification of Developing Economies: Imperatives for Sustainable Environment and Technological Innovations; OAU: Osun, State, Nigeria, 2020.Search in Google Scholar

40. Inderbir, S., Ashish, K. R., Pradeep, K., Manoj, K., Hassan, Y. A. Carbon nanotubes: synthesis, properties and pharmaceutical applications. Fullerenes, Nanotub. Carbon Nanostruct. 2009, 17, 361–377.10.1080/15363830903008018Search in Google Scholar

41. Lei, X., Qiao, M., Tian, L., Chen, Y., Zhang, Q. Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J. Phys. Chem. C 2016, 120, 2548–2561; https://doi.org/10.1021/acs.jpcc.5b11667.Search in Google Scholar

42. Dai, W., Yu, J., Liu, Z., Wang, Y., Song, Y., Lyu, J., Bai, H., Nishimura, K., Jiang, N. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Compos. Appl. Sci. Manuf. 2015, 76, 73–81; https://doi.org/10.1016/j.compositesa.2015.05.017.Search in Google Scholar

43. Zuo, L., Fan, W., Zhang, Y., Zhang, L., Gao, W., Huang, Y., Liu, T. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos. Sci. Technol. 2017, 139, 57–63; https://doi.org/10.1016/j.compscitech.2016.12.008.Search in Google Scholar

44. Zhang, T., Zhao, Y., Wang, K. Polyimide aerogels crosslinked with aminated Ag nanowires: mechanically strong and tough. Polymers 2017, 9, 530; https://doi.org/10.3390/polym9100530.Search in Google Scholar PubMed PubMed Central

45. Song, Y., Yao, H., Tan, H., Zhu, S., Dong, B., Guan, S., Liu, H. Synthesis and memory characteristics of highly organo-soluble hyperbranched polyimides with various electron acceptors. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2281–2288; https://doi.org/10.1002/pola.28550.Search in Google Scholar

46. Li, X., Wang, J., Zhao, Y., Zhang, X. Template-free self assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect. ACS Appl. Mater. Interfaces 2018, 10, 16901–16910; https://doi.org/10.1021/acsami.8b04081.Search in Google Scholar PubMed

47. Qin, Y., Peng, Q., Ding, Y., lin, Z., Wang, C., Li, Y., Xu, F., Li, J., Yuan, Y., He, X., Li, Y. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015, 9, 8933–8941; https://doi.org/10.1021/acsnano.5b02781.Search in Google Scholar PubMed

48. Chao, M., Li, Y., Wu, G., Zhou, Z., Yan, L. Functionalized multiwalled carbon nanotube-reinforced polyimide composite films with enhanced mechanical and thermal properties. Int. J. Polym. Sci. 2019, 1, 12; https://doi.org/10.1155/2019/9302803.Search in Google Scholar

49. Ansari, R., Hassanzadeh-Aghdam, M. K., Darvizeh, A. Coefficients of thermal expansion of carbon nanotube-reinforced polyimide nanocomposites: a micromechanical analysis. J. Mater. Des. Appl. 2016, 0, 1–11; https://doi.org/10.1177/1464420716666106.Search in Google Scholar

50. Su, C., Xue, F., Li, T., Xin, Y., Wang, M., Tang, J., Ma, Y. Fabrication and multifunctional properties of polyimide based hierarchical composites with in situ grown carbon nanotubes. RSC Adv. 2017, 7, 29686–29696; https://doi.org/10.1039/c7ra00436b.Search in Google Scholar

51. Jia, X., Zhang, Q., Zhao, M-Q., Xu, G.-H., Huang, J.-Q., Qian, W., Lu, Y., Wei, F. Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J. Mater. Chem. 2012, 22, 7050–7056; https://doi.org/10.1039/c2jm15359a.Search in Google Scholar

52. Launey, M. E., Ritchie, R. O. On the fracture toughness of advanced materials. Adv. Mater. 2009, 21, 2103–2110; https://doi.org/10.1002/adma.200803322.Search in Google Scholar

53. Nayak, L., Rahaman, M., Aldalbahi, A., Chaki, T. P., Khastgir, D. Polyimide-carbon nanotubes nanocomposites: electrical conduction behavior under cryogenic condition. Polym. Eng. Sci. 2017, 57, 291–298; https://doi.org/10.1002/pen.24412.Search in Google Scholar

54. Ree, M., Kim, K., Woo, S. H., Chang, H. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. J. Appl. Phys. 1997, 81, 698–708; https://doi.org/10.1063/1.364210.Search in Google Scholar

55. Li, F., Fang, S., Ge, J. J., Honigfort, P. S., Chen, J.-C., Harris, W., Cheng, S. Z. D. Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymers 1999, 40, 4571–4583; https://doi.org/10.1016/s0032-3861(99)00066-x.Search in Google Scholar

56. Li, S., Feng, Y., Li, Y., Feng, W., Yoshimo, K. Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon 2016, 109, 131–140; https://doi.org/10.1016/j.carbon.2016.07.052.Search in Google Scholar

57. Li, Q., Luo, S., Wang, Y., Wang, Q.-M. Carbon based polyimide nanocomposites thin film strain sensors fabricated by ink-jet printing method. Sens. Actuators, A 2019, 300, 111664; https://doi.org/10.1016/j.sna.2019.111664.Search in Google Scholar

58. Seetala, N. V., Hendon, C. R., Tull-Walker, N., Behr, J. V., Hester, B., Lebron-Colon, M. K., Meador, M. Synthesis and characterization of polyimide-carbon nanotube composites. World J. Eng. 2014, 11, 193–198; https://doi.org/10.1260/1708-5284.11.3.193.Search in Google Scholar

59. Park, O.-K., Owuor, P. S., Jaques, Y. M., Jaques, Y. M., Galvao, D. S., Kim, N. H., Lee, J. H., Tiwary, C. S., Ajayan, P. M. Hexagonal boron nitride-carbon nanotube hybrid network structure for enhanced thermal, mechanical and electrical properties of polyimide nanocomposites. Compos. Sci. Technol. 2019, 188, 107977.10.1016/j.compscitech.2019.107977Search in Google Scholar

60. Jiang, Q., Tallury, S. S., Qiu, Y., Pasquinelli, M. A. Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation. Nanotechnol. Rev. 2020, 9, 136–145; https://doi.org/10.1515/ntrev-2020-0012.Search in Google Scholar

61. Heidarhaei, M., Shariati, M., Eipakchi, H. R. Analytical investigation of interfacial debonding in graphene-reinforced polymer nanocomposites with cohesive zone interface. Mech. Adv. Mater. Struct. 2019, 26, 1008–1017; https://doi.org/10.1080/15376494.2018.1430260.Search in Google Scholar

62. Chen, X., Zhang, L., Park, C., Fay, C. C., Wang, X., Ke, C. Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 2015, 107, 253105; https://doi.org/10.1063/1.4936755.Search in Google Scholar

63. Jiang, Q., Tallury, S. S., Qiu, Y., Pasquinelli, M. A. Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites. Carbon 2014, 67, 440–448; https://doi.org/10.1016/j.carbon.2013.10.016.Search in Google Scholar

64. Jiang, Q., Wu, L. Property enhancement of aligned carbon nanotube/polyimide composite by strategic prestraining. J. Reinforc. Plast. Compos. 2016, 35, 287–294; https://doi.org/10.1177/0731684415614086.Search in Google Scholar

65. Kareem, A. A. Preparation and electrical properties of polyimide/carbon nanotubes composites. Mater. Sci. Pol. 2017, 35, 755–759; https://doi.org/10.1515/msp-2017-0096.Search in Google Scholar

66. Yuan, W., Che, J., Chan-Park, M. B. A novel polyimide dispersing matrix for highly electrically conductive solution-cast carbon nanotube-based composite. Chem. Mater. 2011, 23, 4149–4157; https://doi.org/10.1021/cm200909x.Search in Google Scholar

67. Boland, C. S., Khan, U., Ryan, G., Barwich, S., Charifou, R., Harvey, A., Backes, C., Li, Z., Ferreira, M. S., Mobius, M. E. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260; https://doi.org/10.1126/science.aag2879.Search in Google Scholar PubMed

68. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163; https://doi.org/10.1021/nn501204t.Search in Google Scholar PubMed

69. Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 2011, 11, 10691–10723; https://doi.org/10.3390/s111110691.Search in Google Scholar PubMed PubMed Central

70. Larin, S. V., Nazarychev, V. M., Dobrovskiy, A. Y., Yu, A., Lyulin, A. V., Lyulin, S. Structural ordering in SWCNT-polyimide nanocomposites and its influence on their mechanical properties. Polymers 2018, 10, 1245; https://doi.org/10.3390/polym10111245.Search in Google Scholar PubMed PubMed Central

71. Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S. E., McGuire, E. K., Sanchez, B.M., Duesberg, G. S., McEvoy, N., Pennycook, T. J., Downing, C., Crossley, A., Nicolosi, V., Coleman, J. N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630; https://doi.org/10.1038/nmat3944.Search in Google Scholar PubMed

72. El-Kady, M. F., Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475; https://doi.org/10.1038/ncomms2446.Search in Google Scholar PubMed

73. El-Kady, M. F., Strong, V., Dubin, S., Dubin, S., Kaner, R. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330; https://doi.org/10.1126/science.1216744.Search in Google Scholar PubMed

74. Schniepp, H. C., Kudin, K. N., Li, J.-L., Prud’homme, R. K., Car, R., Saville, D. A., Aksay, I. A. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2008, 2, 2577–2584; https://doi.org/10.1021/nn800457s.Search in Google Scholar PubMed

75. Schniepp, H. C., Li, J.-L., McAllister, M. J., Sai, H., Herrera-Alonso, M., adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539; https://doi.org/10.1021/jp060936f.Search in Google Scholar PubMed

76. Yang, Y., Kaner, R. B., Tung, C.-C., Allen, M. J. High-Throughput Solution Processing of Large Scale Graphene and Device Application. U.S. Patent 9,105,403 B2, August 11, 2015.Search in Google Scholar

77. Lawal, A. T. Recent progress in graphene based polymer nanocomposites. Cogent Chem. 2020, 6, 1833476; https://doi.org/10.1080/23312009.2020.1833476.Search in Google Scholar

78. Yoonessi, M., Gaier, J. R., Sahimi, M., Daulton, T., Kaner, R. B., Meador, M. A. Fabrication of graphene−polyimide nanocomposites with superior electrical conductivity. ACS Appl. Mater. Interfaces 2017, 9, 43230–43238; https://doi.org/10.1021/acsami.7b12104.Search in Google Scholar PubMed

79. Ogbonna, V. E., Popoola, A. P. I., Popoola, O. M., Adeosun, S. O. A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym. Bull. 2020, 1–33; https://doi.org/10.1007/s00289-020-03487-.Search in Google Scholar

80. Huang, T., Xin, Y., Li, T., Nutt, S., Su, C., Chen, H., Liu, P., Lai, Z. Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl. Mater. Interfaces 2013, 5, 4878–4891; https://doi.org/10.1021/am400635x.Search in Google Scholar PubMed

81. Ha, Y.-M., Kim, Y. N., Kim, Y.-O., So, C., Lee, J.-S., Kim, J., Jung, Y. C. Enhanced mechanical properties and thermal conductivity of polyimide nanocomposites incorporating individualized boron-doped graphene. Carbon Lett. 2020, 30, 457–464; https://doi.org/10.1007/s42823-019-00115-y.Search in Google Scholar

82. Xu, Z., Liu, Y., Zhao, X., Peng, L., Sun, H., Xu, Y., Ren, X., Jin, C., Xu, P., Wang, M., Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456; https://doi.org/10.1002/adma.201506426.Search in Google Scholar PubMed

83. Ji, X., Xu, Y., Zhang, W., Cui, L., Liu, J. Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Appl. Sci. Manuf. 2016, 87, 29–45; https://doi.org/10.1016/j.compositesa.2016.04.011.Search in Google Scholar

84. Gong, J., Liu, Z., Yu, J., Dai, D., Dai, W., Du, S., Li, C., Jiang, N., Zhan, Z., Lin, C,-T. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Appl. Sci. Manuf. 2016, 87, 290–296; https://doi.org/10.1016/j.compositesa.2016.05.010.Search in Google Scholar

85. Chen, Y., Li, D., Yang, W., Xiao, C., Wei, M. Effects of different amine functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymers 2018, 140, 56–72; https://doi.org/10.1016/j.polymer.2018.02.017.Search in Google Scholar

86. Lim, J., Yeo, H., Kim, S. G., Park, O.-K., Yu, J., Hwang, J. Y., Goh, M., Ku, B.-C., Lee, H. S., You, N.-H. Pyridine-functionalized graphene/polyimide nanocomposites; mechanical, gas barrier, and catalytic effects. Compos. B Eng. 2017, 114, 280–288; https://doi.org/10.1016/j.compositesb.2016.12.057.Search in Google Scholar

87. Li, X., Fang, X., Zhang, P., Yan, J., Chen, Y., Chen, X. Preparation and properties of reduced graphene oxide/polyimide composite films. High Perform. Polym. 2020, 32, 65–72; https://doi.org/10.1177/0954008319852665.Search in Google Scholar

88. Ma, L., Wang, G., Dai, J. Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Perform. Polym. 2017, 29, 187–196; https://doi.org/10.1177/0954008316634177.Search in Google Scholar

89. Ma, L., Wang, G., Dai, J. Preparation of functional reduced graphene oxide and its influence on the properties of polyimide composites. J. Appl. Polym. Sci. 2017, 134, 45119; https://doi.org/10.1002/app.45119.Search in Google Scholar

90. Lu, Y., Hao, J., Xiao, G., Chen, L., Wang, T., Hu, Z. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films. Appl. Surf. Sci. 2017, 422, 710–719; https://doi.org/10.1016/j.apsusc.2017.06.087.Search in Google Scholar

91. Wang, J. Y., Yang, S. Y., Huang, Y. L., Tien, H.-W., Chin, W.-K., Ma, C.-C. M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J. Mater. Chem. 2011, 21, 13569; https://doi.org/10.1039/c1jm11766a.Search in Google Scholar

92. Zhang, L.-B., Wang, J.-Q., Wang, H.-G., Xu, Y., Wang, Z.-F., Li, Z.-P., Mi, Y.-J., Yang, S.-R. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos. Appl. Sci. Manuf. 2012, 43, 1537–1545; https://doi.org/10.1016/j.compositesa.2012.03.026.Search in Google Scholar

93. Qin, S., Qiu, S., Cui, M., Dai, Z., Zhao, H., Wang, L. Synthesis and properties of polyimide nanocomposite containing dopamine-modified graphene oxide. High Perform. Polym. 2019, 31, 331–340; https://doi.org/10.1177/0954008318768857.Search in Google Scholar

94. Wang, C., Lan, Y., Yu, W., Li, X., Qian, Y., Liu, H. Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Appl. Surf. Sci. 2016, 362, 11–19; https://doi.org/10.1016/j.apsusc.2015.11.201.Search in Google Scholar

95. Wu, X., Zhang, Y., Du, P., Jin, Z., Zhao, H., Wang, L. Synthesis, characterization and properties of graphene-reinforced polyimide coatings. New J. Chem. 2019, 43, 5697–5705; https://doi.org/10.1039/c9nj00216b.Search in Google Scholar

96. Zhang, L., Tu, S., Wang, H., Du, Q. Preparation of polymer/graphene oxide nanocomposites by two-step strategy composed of in situ polymerization and melt processing. Compos. Sci. Technol. 2018, 154, 1–7; https://doi.org/10.1016/j.compscitech.2017.10.030.Search in Google Scholar

97. Salom, C., Prolongo, M., Toribio, A., Martinez-Martinez, A., de Carcer, I. A., Prolongo, S. Mechanical properties and adhesive behaviour of epoxy-graphene nanocomposites. Int. J. Adhesion Adhes., 84, 119–125.10.1016/j.ijadhadh.2017.12.004Search in Google Scholar

98. Chen, S., Li, J., Wei, L., Jin, Y., Shang, H., Hua, M., Duan, H. Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings. Tribol. Int. 2017, 115, 470–476; https://doi.org/10.1016/j.triboint.2017.06.011.Search in Google Scholar

99. Chang, J.-H. Polyimide nanocomposites with functionalized graphene sheets: thermal property, morphology, gas permeation, and electroconductivity. J. Thermoplast. Compos. Mater. 2017, 31, 837–861; https://doi.org/10.1177/0892705717720970.Search in Google Scholar

100. Lau, K. S. Y. High-performance polyimides and high temperature resistant polymers. In Handbook of Thermoset Plastics, 3rd ed.; Dodiuk, H., Goodman, S. H., Eds.; William Andrew Publishing: Norwich, NY, 2014, pp. 297–424.10.1016/B978-1-4557-3107-7.00010-5Search in Google Scholar

101. Fazil, S., Saeed, S., Waseem, M., Rehman, W., Bangesh, M., Liaqat, K. Improving mechanical, thermal, and electrical of polyimide by incorporating vinyltriethoxysilane functionalized graphene oxide. Polym. Compos. 2018, 39, E1635–E1642; https://doi.org/10.1002/pc.24581.Search in Google Scholar

102. Shao, T., Zhang, C., Long, K. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl. Surf. Sci. 2010, 256, 3888–3894; https://doi.org/10.1016/j.apsusc.2010.01.045.Search in Google Scholar

103. Advani, S. G., Hsaio, K. T. Introduction to composites and manufacturing processes. In Woodhead Publishing Series in Composites Science and Engineering, Manufacturing Techniques for Polymer Composites (PMCs); Woodhead Publisher, 2012; pp. 1–12.10.1533/9780857096258.1.1Search in Google Scholar

104. Praseetha, P. N., George, K. E., Jayakrishnan, N. Studies on mechanical behavior high impact polystyrene/vinyl clay nanocomposites: comparison between in situ polymerization and melt mixing. Polym. Compos. 2017, 38, 68–76.10.1002/pc.23561Search in Google Scholar

105. Gururaja, S., Taya, M., Nakayama, H., Kang, Y. S., Kawasaki, A., Sutou, Y. Effective magnetic properties of Fe-NiTi (FSMA) particulate composites. In Proceedings of SPIE 5761, Smart Structures and Materials: Active Materials: Behaviour and Mechanics; SPIE: San Diego, California, USA, 2005.10.1117/12.600194Search in Google Scholar

106. Schwertz, M., Sebastien, L., Elodie, B., Carrado, A., Vallat, M.-F., Nardin, M. Consolidation by spark plasma sintering of polyimide and polyetheretherketone. J. Appl. Polym. Sci. 2014, 131, 40783; https://doi.org/10.1002/app.40783.Search in Google Scholar

107. Tanaka, A., Umeda, K., Yudasaka, M., Suzuki, M., Ohana, T., Yumura, M., Iijima, S. Friction and wear of carbon nanohorn-containing polyimide composites. Tribol. Lett. 2005, 19, 35–142; https://doi.org/10.1007/s11249-005-5094-3.Search in Google Scholar

108. Adesina, O. T., Sadiku, E. R., Jamiru, T., Ogunbiyi, O. F., Beneke, L. W., Adegbola, A. T. Optimization of SPS processing parameters on the density and hardness properties of graphene reinforced polylactic acid nanocomposite. Int. J. Adv. Manuf. Technol. 2019, 102, 4047–4058; https://doi.org/10.1007/s00170-019-03530-7.Search in Google Scholar

109. Schwertz, M., Lemonnier, S., Elodie, B., Carrado, A., Vallat, M.-F., Nardin, M. Spark plasma sintering technology applied to polymer-based composites for structural light weighting. Powder Metall. 2015, 58, 87–90; https://doi.org/10.1179/0032589914z.000000000212.Search in Google Scholar

110. Watanabe, Y., Iwasa, Y., Sato, H., Teramoto, A., Abe, K., Miura-Fujiwara, E. Microstructures and mechanical properties of titanium/biodegradable-polymer FGM for bone tissue fabricated by spark plasma sintering method. J. Mater. Process. Technol. 2011, 211, 1919–1926; https://doi.org/10.1016/j.jmatprotec.2011.05.024.Search in Google Scholar

111. Omori, M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 2000, 287, 183–188; https://doi.org/10.1016/s0921-5093(00)00773-5.Search in Google Scholar

112. Omori, M., Okubo, A., Kang, G. H., Hirai, T. Preparation and properties of polyimide/Cu functionally graded material’. In Functionally Graded Materials 1996; Ichiro, S., Yoshinari, M., Eds.; Elsevier Science: Amsterdam, 1997, pp. 767–772.10.1016/B978-044482548-3/50125-6Search in Google Scholar

113. Schwartz, M., Ranque, P., Sebastien, L., Elodie, B., Carrado, A., Vallat, M.-F., Nardin, M. Optimization of the spark plasma sintering processing parameters affecting the properties of polyimide. J. Appl. Polym. Sci. 2015, 132, 41542.10.1002/app.41542Search in Google Scholar

114. Naghd, S., Rhee, K. Y., Hui, D., Park, S. J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings 2018, 8, 278.10.3390/coatings8080278Search in Google Scholar

Received: 2021-06-04
Accepted: 2021-07-31
Published Online: 2021-08-23
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0176/html
Scroll to top button