Startseite Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces

  • Liang Wang , Jun He , Qingdong Wang , Jing Zhang und Jie Feng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Following the stipulation to replace nondegradable plastics with biodegradable materials in China, cost-effective and water-resistant packaging materials have become increasingly necessary. In this work, lignin reinforced thermoplastic cassava starch (TPS) pieces were prepared by filling glycerol and lignin powder into starch via a melt blending process and then being pressed into thin pieces. A mechanical properties test showed that following the addition of 3 wt% lignin, the tensile strength of the TPS piece was improved to 16.15 MPa from 3.71 MPa of the original TPS piece. The porous structures of the lignin powder tie the TPS macromolecular chains, induce higher crystallization, and thus provide higher tensile strength and lower elongation at break. After sandwiching two pieces of poly (butylene adipateco-terephthalate) (PBAT)/peanut shell powder composite thin film to each side of the TPS piece, the PBAT/TPS/PBAT sandwich gains excellent water resistance properties. However, as soon as the sandwich piece is cut into smaller ones, they absorb water quickly, implying such pieces can be biodegraded rapidly. These characteristics make it especially suitable for use in the preparation of cabinet waste bags, which are generally stirred into organic fertilizer with the cabinet waste. Slow degradation may negatively affect soil health and farm production.


Corresponding author: Jing Zhang and Jie Feng, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China, E-mail: (J. Zhang),

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We thank Biopolymer Key Laboratory of Zhejiang province for supplying open funds and Shaoxing Starch Company (Zhejiang, China) for providing PBAT/peanut shell powder film.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sessini, V., Arrieta, M. P., Raquez, J. M., Dubois, P., Kenny, J. M., Peponi, L. Polym. Degrad. Stab. 2019, 159, 184–198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025.Suche in Google Scholar

2. Tawakkal, I. S. M. A., Cran, M. J., Miltz, J., Bigger, S. W. J. Food Sci. 2014, 79, 1477–1490. https://doi.org/10.1111/1750-3841.12534.Suche in Google Scholar PubMed

3. Xie, F. W., Pollet, E., Halley, P. J., Averous, L. Prog. Polym. Sci. 2013, 38, 1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002.Suche in Google Scholar

4. Yang, J. H., Tang, K. K., Qin, G. Q., Chen, Y. X., Peng, L., Wang, X., Xiao, H. N., Xia, Q. Y. Carbohydr. Polym. 2017, 166, 256–263. https://doi.org/10.1016/j.carbpol.2017.03.001.Suche in Google Scholar PubMed

5. Song, A. X., Mao, Y. H., Siu, K. C., Wu, J. Y. Int. J. Biol. Macromol. 2018, 111, 587–594. https://doi.org/10.1016/j.ijbiomac.2018.01.052.Suche in Google Scholar PubMed

6. Giroto, A. S., Garcia, R. H. S., Colnago, L. A., Klamczynski, A., Glenn, G. M., Ribeiro, C. Int. J. Biol. Macromol. 2020, 144, 143–150. https://doi.org/10.1016/j.ijbiomac.2019.12.094.Suche in Google Scholar PubMed

7. Mehboob, S., Ali, T. M., Sheikh, M., Hasnain, A. Int. J. Biol. Macromol. 2020, 155, 786–794. https://doi.org/10.1016/j.ijbiomac.2020.03.144.Suche in Google Scholar PubMed

8. Wang, X., Huang, L. X., Zhang, C. H., Deng, Y. J., Xie, P. J., Liu, L. J., Cheng, J. Carbohydr. Polym. 2020, 240, 116292. https://doi.org/10.1016/j.carbpol.2020.116292.Suche in Google Scholar PubMed

9. Clasen, S. H., Muller, C. M. O., Parize, A. L., Pires, A. T. N. Carbohydr. Polym. 2018, 180, 348–353. https://doi.org/10.1016/j.carbpol.2017.10.016.Suche in Google Scholar PubMed

10. Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., Zavareze, E. D. R. Food Chem. 2017, 221, 1546–1559. https://doi.org/10.1016/j.foodchem.2016.10.138.Suche in Google Scholar PubMed

11. Cuenca, P., Ferrero, S., Albani, O. Food Hydrocolloids 2020, 100, 105430. https://doi.org/10.1016/j.foodhyd.2019.105430.Suche in Google Scholar

12. Masina, N., Choonara, Y. E., Kumar, P., Du Toit, L. C., Govender, M., Indermun, S., Pillay, V. Carbohydr. Polym. 2017, 157, 1226–1236. https://doi.org/10.1016/j.carbpol.2016.09.094.Suche in Google Scholar PubMed

13. Ni, S. Z., Wang, B. B., Zhang, H., Zhang, Y. C., Liu, Z. L., Wu, W. B., Xiao, H. N., Dai, H. Q. Eur. Polym. J. 2019, 110, 385–393. https://doi.org/10.1016/j.eurpolymj.2018.12.003.Suche in Google Scholar

14. Xu, J. T., Andrews, T. D., Shi, Y. C. Starch-Starke 2020, 72, 1900238. https://doi.org/10.1002/star.201900238.Suche in Google Scholar

15. Hu, X. T., Jia, X., Zhi, C. H., Jin, Z. Y., Miao, M. Int. J. Biol. Macromol. 2019, 130, 197–202. https://doi.org/10.1016/j.ijbiomac.2019.02.144.Suche in Google Scholar PubMed

16. Dai, L. M., Zhang, J., Cheng, F. Int. J. Biol. Macromol. 2019, 132, 897–905. https://doi.org/10.1016/j.ijbiomac.2019.03.197.Suche in Google Scholar PubMed

17. Abdullah, Z. W., Dong, Y. J. Mater. Sci. 2018, 53, 15319–15339. https://doi.org/10.1007/s10853-018-2613-9.Suche in Google Scholar

18. Tavares, K. M., De Campos, A., Luchesi, B. R., Resende, A. A., De Oliveira, J. E., Marconcini, J. M. Carbohydr. Polym. 2020, 246, 116521. https://doi.org/10.1016/j.carbpol.2020.116521.Suche in Google Scholar PubMed

19. Liu, W., Wang, Z., Liu, J., Dai, B. F., Hu, S. S., Hong, R. F., Xie, H., Li, Z. H., Chen, Y., Zeng, G. S. Food Hydrocoll. 2020, 108, 106006. https://doi.org/10.1016/j.foodhyd.2020.106006.Suche in Google Scholar

20. Dang, K. M., Yoksan, R. Carbohydr. Polym. 2015, 115, 575–581. https://doi.org/10.1016/j.carbpol.2014.09.005.Suche in Google Scholar PubMed

21. Shi, Z., Reddy, N., Shen, L., Hou, X. L., Yang, Y. Q. J. Agric. Food Chem. 2014, 62, 4668–4676. https://doi.org/10.1021/jf5013709.Suche in Google Scholar PubMed

22. Brandelero, R. P. H., Grossmann, M. V. E., Yamashita, F. Carbohydr. Polym. 2011, 86, 1344–1350. https://doi.org/10.1016/j.carbpol.2011.06.045.Suche in Google Scholar

23. Bai, J., Pei, H. J., Zhou, X. P., Xie, X. L. Eur. Polym. J. 2021, 143, 110198. https://doi.org/10.1016/j.eurpolymj.2020.110198.Suche in Google Scholar

24. Olivato, J. B., Grossmann, M. V. E., Yamashita, F., EirasbL, D., Pessanb, L. A. Carbohydr. Polym. 2012, 87, 2614–2618. https://doi.org/10.1016/j.carbpol.2011.11.035.Suche in Google Scholar

25. Cunha, M., Fernandes, B., Covas, J. A., Vicente, A. A., Hilliou, L., J. Appl. Polym. Sci. 2016, 133, 42165. https://doi.org/10.1002/app.42165.Suche in Google Scholar

26. Zhang, C. W., Nair, S. S., Chen, H. Y., Yan, N., Farnood, R., Li, F. Y. Carbohydr. Polym. 2020, 230, 115626. https://doi.org/10.1016/j.carbpol.2019.115626.Suche in Google Scholar PubMed

27. Travalini, A. P., Lamsal, B., Magalhaes, W. L. E., Demiate, I. M. Int. J. Biol. Macromol. 2019, 139, 1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115.Suche in Google Scholar PubMed

28. Fang, S. F., Wu, S. W., Huang, J., Wang, D., Tang, Z. H., Guo, B. C., Zhang, L. Q. Ind. Eng. Chem. Res. 2020, 59, 21047–21057. https://doi.org/10.1021/acs.iecr.0c04242.Suche in Google Scholar

29. Tavares, L. B., Ito, N. M., Salvadori, M. C., dos Santos, D. J. Rosa Polym Test. DS. 2018, 67, 169–176. https://doi.org/10.1016/j.polymertesting.2018.03.004.Suche in Google Scholar

30. Bodirlau, R., Teaca, C. A., Spiridon, I. Compos. B. Eng. 2013, 44, 575–583. https://doi.org/10.1016/j.compositesb.2012.02.039.Suche in Google Scholar

31. Calgeris, I., Cakmakci, E., Ogan, A., Kahraman, M. V., Kayaman-Apohan, N. STARCH-STARKE 2012, 64, 399–407. https://doi.org/10.1002/star.201100158.Suche in Google Scholar

32. Ma, X. F., Yu, J. G. Carbohydr. Polym. 2004, 57, 197–203. https://doi.org/10.1016/j.carbpol.2004.04.012.Suche in Google Scholar

33. De Miranda, C. S., Ferreira, M. S., Magalhaes, M. T., Goncalves, A. P. B., de Oliveira, J. C., Guimaraes, D. H., Jose, N. M. Mater. Res. 2015, 18, 260–264. https://doi.org/10.1590/1516-1439.370414.Suche in Google Scholar

34. Suhas, Carrott. P. J. M., Ribeiro Carrott, M. M. L. Bioresour. Technol. 2007, 98, 2301–2312. https://doi.org/10.1016/j.biortech.2006.08.008.Suche in Google Scholar PubMed

35. Khezami, L., Chetouani, A., Taouk, B., Capart, R. Powder Technol. 2005, 157, 48–56. https://doi.org/10.1016/j.powtec.2005.05.009.Suche in Google Scholar

36. Bouajila, J., Dole, P., Joly, C., Limare, A. J. Appl. Polym. Sci. 2006, 102, 1445–1451. https://doi.org/10.1002/app.24299.Suche in Google Scholar

37. Al-Hassan, A. A., Norziah, M. H. Food Hydrocoll. 2012, 26, 108–117. https://doi.org/10.1016/j.foodhyd.2011.04.015.Suche in Google Scholar

38. Santos, T. A., Spinace, M. A. S. Int. J. Biol. Macromol. 2021, 167, 358–368. https://doi.org/10.1016/j.ijbiomac.2020.11.156.Suche in Google Scholar PubMed

39. Zhou, X. M., Cheng, R., Wang, B., Zeng, J. S., Xu, J., Li, J. P., Kang, L., Cheng, Z., Gao, W. H., Chen, K. F. Carbohydr. Polym. 2021, 251, 117117. https://doi.org/10.1016/j.carbpol.2020.117117.Suche in Google Scholar PubMed

40. Chang, C. C., Trinh, B. M., Mekonnen, T. H. J. Colloid. Interface Sci. 2021, 593, 290–303. https://doi.org/10.1016/j.jcis.2021.03.010.Suche in Google Scholar PubMed

41. Kargarzadeh, H., Galeski, A., Pawlak, A. Polymer 2020, 203, 122748. https://doi.org/10.1016/j.polymer.2020.122748.Suche in Google Scholar

42. Xiong, S. J., Pang, B., Zhou, S. J., Li, M. K., Yang, S., Wang, Y. Y., Shi, Q. T., Wang, S. F., Yuan, T. Q., Sun, R. C. ACS Sustain. Chem. Eng. 2020, 8, 5338–5346. https://doi.org/10.1021/acssuschemeng.0c00789.Suche in Google Scholar

Received: 2021-03-28
Accepted: 2021-07-06
Published Online: 2021-08-09
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0094/html
Button zum nach oben scrollen