A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
-
Song Chen
, Jian Li , Lei Wei , Yongliang Jin , Tushar Khosla , Jun Xiao , Bingxue Cheng und Haitao Duan
Abstract
Molecular models were established to predict the miscibility of polyimide/polythene mixing systems and the enhancing effects of compatibilizer addition of maleic anhydride grafted polythene (MAH-g-PE). Molecular dynamics simulations were applied to investigate radial distribution functions and Flory-Huggins parameters of the mixing systems. Results show that polyimide/polythene is miscible to a certain degree, and the miscibility gets better after adding MAH-g-PE. Dissipative particle dynamics (DPD) simulations display that micro-phase separation occurs in the polyimide/polythene mixing systems, however, effective interfaces appear between polyimide and polythene phases after adding MAH-g-PE. The results of molecular mechanics simulations indicate that the ability of mixing systems to resist stretch, compression and shear deformation increases after adding MAH-g-PE. This work offers a promising technique to predict miscibility properties for polyimide/polythene system prior to actual production and attempt to find a suitable compatibilizer for that system.
Acknowledgements
We would like to thank the National Natural Science Foundation of China under the Grant no. 51505341 for the financial support of this research, Funder Id: 10.13039/501100001809.
References
[1] Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Nat. Mater. 2002, 1, 45–49.10.1038/nmat700Suche in Google Scholar PubMed
[2] Zia KM, Bhatti HN, Bhatti IA. React. Funct. Polym. 2007, 67, 675–692.10.1016/j.reactfunctpolym.2007.05.004Suche in Google Scholar
[3] Domingues N, Gaspar-Cunha A, Covas JA. J. Polym. Eng. 2012, 32, 81–94.10.1515/polyeng-2012-0501Suche in Google Scholar
[4] Akinpelu M, Dahunsi BI, Olafusi O, Awogboro O, Quadri A. ARPN J. Eng. Appl. Sci. 2013, 8, 290–295.Suche in Google Scholar
[5] Talukdar K, Mitra AK. Compos. Struct. 2010, 92, 1701–1705.10.1016/j.compstruct.2009.12.008Suche in Google Scholar
[6] Mu D, Li JQ, Zhou YH. J. Mol. Model. 2011, 17, 607–619.10.1007/s00894-010-0755-zSuche in Google Scholar PubMed
[7] Lützen H, Hartwig A. Macromol. Mater. Eng. 2013, 298, 1275–1281.10.1002/mame.201200435Suche in Google Scholar
[8] Davoodi J, Ahmadi M. Composites, Part B 2012, 43, 10–14.10.1016/j.compositesb.2011.04.023Suche in Google Scholar
[9] Aulagner P, Ainser A, Carrot C, Guillet J. J. Polym. Eng. 2000, 20, 381–401.10.1515/POLYENG.2000.20.5.381Suche in Google Scholar
[10] Vishnyakov A, Lee MT, Neimark AV. J. Phys. Chem. Lett. 2013, 4, 797–802.10.1021/jz400066kSuche in Google Scholar PubMed
[11] Ramirez D, Nanclares J, Spontón M, Polo M, Estenoz D, Jaramillo F. J. Polym. Eng. 2017, 37, 471–480.10.1515/polyeng-2016-0106Suche in Google Scholar
[12] Zelikman E, Alperstein D, Mechrez G, Suckeveriene R, Narkis M. Polym. Bull. 2013, 70, 1195–1204.10.1007/s00289-012-0837-4Suche in Google Scholar
[13] Afify ND, Mountjoy G, Haworth R. Comput. Mater. Sci. 2017, 128, 75–80.10.1016/j.commatsci.2016.10.046Suche in Google Scholar
[14] Ionita M. Composites, Part B 2012, 43, 3491–3496.10.1016/j.compositesb.2011.12.008Suche in Google Scholar
[15] Kato K, Karube K, Nakamura N, Ito K. Polym. Chem. 2015, 6, 2241–2248.10.1039/C4PY01644KSuche in Google Scholar
[16] Blum G, Kremer F, Juworek T, Wegner G. Adv. Mater. 1995, 7, 1017–1020.10.1002/adma.19950071210Suche in Google Scholar
[17] Kacar G, Peters EA, de With G. J. Phys. Chem. C 2013, 117, 21028–21028.10.1021/jp409106mSuche in Google Scholar
[18] Poorgholami-Bejarpasi N, Hashemianzadeh M, Mousavi-Khoshdel SM, Sohrabi B. J. Mol. Model. 2012, 16, 1499–1508.10.1007/s00894-010-0657-0Suche in Google Scholar PubMed
[19] Ahmad S, Johnston BF, Mackay SP, Schatzlein AG, Gellert P, Sengupta D, Uchegbu IF. J. R. Soc., Interface 2010, 7(Suppl 4), S423–S433.10.1098/rsif.2010.0190.focusSuche in Google Scholar PubMed PubMed Central
[20] Fu Y, Liao L, Yang L, Lan Y, Mei L, Liu Y, Hu S. Mol. Simul. 2013, 39, 415–422.10.1080/08927022.2012.738294Suche in Google Scholar
[21] Bergfeldt K, Piculell L, Linse P. J. Phys. Chem. 1996, 100, 3680–3687.10.1021/jp952349sSuche in Google Scholar
[22] Groot RD, Warren PB. J. Chem. Phys. 1997, 107, 4423.10.1063/1.474784Suche in Google Scholar
[23] Sebeck K, Shao C, Kieffer J. ACS Appl. Mater Interfaces 2016, 8, 16885–16896.10.1021/acsami.6b01665Suche in Google Scholar PubMed
[24] Sin LT, Bee ST, Ang RR, Tee TT, Phang SW, Rahmat AR. J. Polym. Eng. 2015, 35, 423–435.10.1515/polyeng-2014-0232Suche in Google Scholar
[25] Seitz JT. J. Appl. Polym. Sci. 1993, 49, 1331–1351.10.1002/app.1993.070490802Suche in Google Scholar
[26] Mermet-Guyennet MRB, De Castro JG, Varol HS, Habibi M, Hosseinkhani B, Martzel N, Bonn D. Polymer 2015, 73, 170–173.10.1016/j.polymer.2015.07.041Suche in Google Scholar
[27] Brooks III CL, Pettitt BM, Karplus M. J. Chem. Phys. 1985, 83, 5897–5908.10.1063/1.449621Suche in Google Scholar
[28] Clancy TC, Mattice WL. Macromolecules 2001, 34, 6482–6486.10.1021/ma010462cSuche in Google Scholar
[29] Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S. Acc. Chem. Res. 2014, 47, 1155–1164.10.1021/ar400263pSuche in Google Scholar
[30] Bogomolny EB. Phys. D 1988, 31, 169–189.10.1016/0167-2789(88)90075-9Suche in Google Scholar
[31] Cahn JW, Hilliard JE. J. Chem. Phys. 1958, 28, 258–267.10.1063/1.1744102Suche in Google Scholar
[32] Sannaningannavar FM, Patil SN, Navati BS, Melavanki RM, Ayachit NH. Polym. Bull. 2013, 70, 3171–3183.10.1007/s00289-013-1015-zSuche in Google Scholar
[33] Maranas JK, Mondello M, Grest GS, Kumar SK, Debenedetti PG, Graessley WW. Macromolecules 1998, 31, 6991–6997.10.1021/ma9717552Suche in Google Scholar
[34] Panella B, Hirscher M, Pütter H, Müller U. Adv. Funct. Mater. 2006, 16, 520–524.10.1002/adfm.200500561Suche in Google Scholar
[35] Tester CC, Aloni S, Gilbert B, Banfield JF. Langmuir 2016, 32, 12039–12046.10.1021/acs.langmuir.6b03265Suche in Google Scholar PubMed
[36] George PA, Quinn K, Cooper-White JJ. Biomaterials 2010, 31, 641–647.10.1016/j.biomaterials.2009.09.094Suche in Google Scholar PubMed
[37] Borg MK, Lockerby DA, Reese JM. J. Comput. Phys. 2013, 233, 400–413.10.1016/j.jcp.2012.09.009Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co-ε-caprolactone)
- Morphological characterization, thermal, and mechanical properties of compatibilized high density polyethylene/polystyrene/organobentonite ternary nanocomposites
- Preparation and assembly
- Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters
- Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
- Poly (vinyl alcohol)/nano-diamond composite films and hydrogels prepared by gamma ray
- Engineering and processing
- Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method
- Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials
- Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical, dielectric, and rheological properties
- A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
- Analysis and quantitative estimation of phenolic antioxidants in polypropylene packaging for fat products
- Effects of ultrasonic injection molding conditions on the plate processing characteristics of PMMA
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co-ε-caprolactone)
- Morphological characterization, thermal, and mechanical properties of compatibilized high density polyethylene/polystyrene/organobentonite ternary nanocomposites
- Preparation and assembly
- Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters
- Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
- Poly (vinyl alcohol)/nano-diamond composite films and hydrogels prepared by gamma ray
- Engineering and processing
- Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method
- Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials
- Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical, dielectric, and rheological properties
- A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
- Analysis and quantitative estimation of phenolic antioxidants in polypropylene packaging for fat products
- Effects of ultrasonic injection molding conditions on the plate processing characteristics of PMMA