Abstract
Polymer processing is a crucial and diverse field in the manufacturing industry. We investigated the process characteristics and effects of injection molding using ultrasonic vibration. An ultrasonic device was installed in an injection mold; polymer was directly vibrated during injection. An ultrasonic oscillation device 45 mm in diameter was placed in the cavity and used to vibrate a poly(methyl methacrylate) melt at 19 kHz. The amplitude of the acoustic unit was set at 15 μm for the measurements. Moreover, cavity pressure sensors were positioned at the front and rear sides of the vibration region to determine the melt flow behavior under ultrasonic-assisted injection molding conditions. Because of the absorption of ultrasonic energy, local heat was generated inside the resin, thus improving the flow characteristics of the melt. Moreover, the melt flow behavior around the skin layer was changed; the molecular orientation and high shear effect were reduced. Furthermore, the freezing rate of the melt was reduced; thus, the amount of melt pressure lost through the cavity was decreased and the residual stress inside the injection-molded component generated during the photoelastic stress analysis was lower.
Acknowledgments
We thank the National Science Council of Taiwan for funding this study.
References
[1] Shakil M, Tariq NH, Ahmad M, Choudhary MA, Akhter JI, Babu SS. Mater. Des. 2014, 55, 263–273.10.1016/j.matdes.2013.09.074Search in Google Scholar
[2] Mekaru H, Goto H, Takahashi M. Microelectron. Eng. 2007, 84, 1282–1287.10.1016/j.mee.2007.01.235Search in Google Scholar
[3] Ibar JP. J. Polym. Eng. Sci. 1998, 38, 1–20.10.1002/pen.10161Search in Google Scholar
[4] Feng W, Isayev AI. Polymer 2004, 45, 1207–1216.10.1016/j.polymer.2003.12.033Search in Google Scholar
[5] Isayev AI, Kumar R, Lewis TM. Polymer 2009, 50, 250–260.10.1016/j.polymer.2008.10.052Search in Google Scholar
[6] Zhong J, Isayev AI. Polymer 2016, 107, 130–146.10.1016/j.polymer.2016.11.006Search in Google Scholar
[7] Zhong J, Isayev AI, Zhang X. Eur. Polym. J. 2016, 80, 16–39.10.1016/j.eurpolymj.2016.04.028Search in Google Scholar
[8] Thomas, C, Rose, JL, Li, ZK. Review of Progress in Quantitative Nondestructive Evaluation. Thompson, DO, Chimenti, DE, Eds., Plenum Press: New York, 1993, pp. 2333–2340.10.1007/978-1-4615-2848-7_300Search in Google Scholar
[9] Michaeli W, Starke C. Polym. Test. 2005, 24, 205–209.10.1016/j.polymertesting.2004.08.009Search in Google Scholar
[10] Hopmann C, Wipperfürth J. J. Appl. Mech. Eng. 2017, 6, 1–7.Search in Google Scholar
[11] Li Y, Liao Y, Gao X, Yuan Y, Shen K. Acta Polym. Sin. 2004, 6, 839–843.Search in Google Scholar
[12] Li Y, Gao X, Yuan Y, Shen K. Acta Polym. Sin. 2007, 12, 1111–1115.Search in Google Scholar
[13] Benitez-Rangel JP, Trejo-Hernández M, Morales-Hernández LA, Domínguez-González A. Mater. Manuf. Process. 2010, 25, 577–580.10.1080/10426910903124902Search in Google Scholar
[14] Gao J, Zhang Q, Wang K, Fu Q, Chen Y, Chen H, Huang H, Rego JM. Compos. Part A Appl. Sci. Manufact. 2012, 43, 562–569.10.1016/j.compositesa.2011.12.030Search in Google Scholar
[15] Zhang J, Liu H, Zhang L, Zhou Q, Gao X, Shen K. Polym. Bull. 2012, 68, 239–251.10.1007/s00289-011-0627-4Search in Google Scholar
[16] Wang Q, Qu J, Huang C, Liu B, Sun X. J. Thermoplast. Compos. Mater. 2015, 28, 806–817.10.1177/0892705713513287Search in Google Scholar
[17] Wang X, Gu J, Shen C, Wang X. Int. J. Adv. Manuf. Technol. 2015, 78, 177–187.10.1007/s00170-014-6621-xSearch in Google Scholar
[18] Wang X, Li H, Gu J, Li Z, Ruan S, Shen C, Wang M. Polymers 2017, 9, 1–23.10.3390/polym9010001Search in Google Scholar PubMed PubMed Central
[19] Yu X, Lu C, Wu H, Guo S. J. Appl. Polym. Sci. 2006, 102, 2990–2997.10.1002/app.24632Search in Google Scholar
[20] Lu C, Yu X, Guo S. Polym. Eng. Sci. 2005, 45, 1666–1672.10.1002/pen.20456Search in Google Scholar
[21] Liu SJ, Lin KY, Tsai SK. Plastic Rubber Compos. Macromol. Eng. 2008, 37, 23–28.10.1179/174328908X283203Search in Google Scholar
[22] Lee J, Kim N, Lee J. Korea-Aust. Rheol. J. 2008, 20, 79–88.Search in Google Scholar
[23] Lee J, Kim N. J. Mater. Process. Technol. 2008, 20I, 710–715.10.1016/j.jmatprotec.2007.11.295Search in Google Scholar
[24] Lee J, Kim N. Korea-Aust. Rheol. J. 2009, 21, 17–25.Search in Google Scholar
[25] Moles M, Roy A, Silberschmidt V. Phys. Proc. 2016, 87, 61–71.10.1016/j.phpro.2016.12.011Search in Google Scholar
[26] Michaeli W, Spennemann A, Gärtner R. Microsyst. Technol. 2002, 8, 55–57.10.1007/s00542-001-0143-9Search in Google Scholar
[27] Michaeli W, Opfermann D. 4M 2006 – Second International Conference on Multi-Material Micro Manufacture, 2006, pp. 345–348, Grenoble, France.10.1016/B978-008045263-0/50078-7Search in Google Scholar
[28] Michaeli W, Kamps T, Hopmann C. Microsyst. Technol. 2011, 17, 243–249.10.1007/s00542-011-1236-8Search in Google Scholar
[29] Qiu Z, Yang X, Zheng H, Gao S, Fang F. Appl. Opt. 2015, 54, 8399–8405.10.1364/AO.54.008399Search in Google Scholar PubMed
[30] Gao S, Qiu Z, Ma Z, Yang Y. Polym. Eng. Sci. 2017, 57, 797–805.10.1002/pen.24455Search in Google Scholar
[31] Planellas M, Sacristan M, Rey L, Olmo C, Aymami J, Casas MT, del Valle LJ, Franco L, Puiggalí J. Ultrason. Sonochem. 2014, 21, 1557–1569.10.1016/j.ultsonch.2013.12.027Search in Google Scholar PubMed
[32] Sacristan M, Plantá X, Morell M, Puiggalí J. Ultrason. Sonochem. 2014, 21, 376–386.10.1016/j.ultsonch.2013.07.007Search in Google Scholar PubMed
[33] Sánchez-Sánchez X, Hernández-Avila M, Elizalde LE, Martínez O, Ferrer I, Elías-Zuñiga A. Mater. Des. 2017, 132, 1–12.10.1016/j.matdes.2017.06.055Search in Google Scholar
[34] Li J, Guo S, Li X. Polym. Degrad. Stabil. 2005, 89, 6–14.10.1016/j.polymdegradstab.2004.12.017Search in Google Scholar
[35] Sato A, Abe T. SeikeiKakou 1998, 10, 445–451.10.4325/seikeikakou.10.445Search in Google Scholar
[36] Sato A, Katagiri K. SeikeiKakou 2000, 12, 340–345.10.4325/seikeikakou.12.340Search in Google Scholar
[37] Sato A, Ito H, Koyama K. Polym. Eng. Sci. 2009, 49, 768–773.10.1002/pen.21268Search in Google Scholar
[38] Sato A, Sakaguchi H, Ito H, Koyama K. Plastics Rubber Compos. 2010, 39, 315–320.10.1179/174328910X12691245470437Search in Google Scholar
[39] Yang YJ, Huang CC, Lin SK, Tao J. J. Polym. Eng. 2014, 34, 673–681.10.1515/polyeng-2013-0328Search in Google Scholar
[40] Yang YJ, Huang CC, Tao J. J. Polym. Eng. 2015, 36, 119–128.10.1515/polyeng-2015-0042Search in Google Scholar
[41] Naugle DG. J. Chem. Phys. 1966, 44, 741–744.10.1063/1.1726755Search in Google Scholar
[42] Suslick KS, Price GJ. Annu. Rev. Mater. Sci. 1999, 29, 295–326.10.1146/annurev.matsci.29.1.295Search in Google Scholar
[43] Chen J, Chen Y, Li H, Lai SY, Jow J. Ultrason. Sonochem. 2010, 17, 66–71.10.1016/j.ultsonch.2009.05.005Search in Google Scholar
[44] Tolunay MN, Dawson PR, Wang KK. Polym. Eng. Sci. 1983, 23, 726–733.10.1002/pen.760231307Search in Google Scholar
[45] Amin SG, Ahmed MHM, Youssef HA. J. Mater. Process. Technol. 1995, 55, 254–260.10.1016/0924-0136(95)02015-2Search in Google Scholar
[46] Seo YS, Park K. J. Kor. Soc. Precis. Eng. 2011, 28, 363–369.10.7732/kjpr.2015.28.3.363Search in Google Scholar
[47] Jung W, Ra J, Park K. Int. J. Precis. Eng. Manuf. 2012, 13, 2195–2201.10.1007/s12541-012-0291-0Search in Google Scholar
[48] Seo YS, Park K. Microsyst. Technol. 2012, 18, 2053–2061.10.1007/s00542-012-1524-ySearch in Google Scholar
[49] Grabalosa J, Ferrer I, Martínez-Romero O, Elías-Zúñiga A, Plantá X, Rivillas F. J. Mater. Process. Technol. 2016, 229, 687–696.10.1016/j.jmatprotec.2015.10.023Search in Google Scholar
[50] Jiang BY, Hu JL, Li J, Liu XC. J. Cent. South Univ. 2012, 19, 380–383.10.1007/s11771-012-1015-4Search in Google Scholar
[51] Negre P, Grabalosa J, Ferrer I, Ciurana J, Elías-Zúñiga A, Rivillas F. Proc. Eng. 2015, 132, 7–14.10.1016/j.proeng.2015.12.460Search in Google Scholar
[52] Grabalosa J, Ferrer I, Elías-Zúñiga A, Ciurana J. Mater. Des. 2016, 98, 20–30.10.1016/j.matdes.2016.02.122Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co-ε-caprolactone)
- Morphological characterization, thermal, and mechanical properties of compatibilized high density polyethylene/polystyrene/organobentonite ternary nanocomposites
- Preparation and assembly
- Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters
- Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
- Poly (vinyl alcohol)/nano-diamond composite films and hydrogels prepared by gamma ray
- Engineering and processing
- Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method
- Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials
- Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical, dielectric, and rheological properties
- A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
- Analysis and quantitative estimation of phenolic antioxidants in polypropylene packaging for fat products
- Effects of ultrasonic injection molding conditions on the plate processing characteristics of PMMA
Articles in the same Issue
- Frontmatter
- Material properties
- Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co-ε-caprolactone)
- Morphological characterization, thermal, and mechanical properties of compatibilized high density polyethylene/polystyrene/organobentonite ternary nanocomposites
- Preparation and assembly
- Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters
- Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
- Poly (vinyl alcohol)/nano-diamond composite films and hydrogels prepared by gamma ray
- Engineering and processing
- Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method
- Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials
- Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical, dielectric, and rheological properties
- A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
- Analysis and quantitative estimation of phenolic antioxidants in polypropylene packaging for fat products
- Effects of ultrasonic injection molding conditions on the plate processing characteristics of PMMA