Abstract
Sb-SnO2/potassium titanate (SSP) composites were synthesized by densely coating Sb-doped SnO2 on the surface of fibrous-like potassium titanate. X-ray diffraction demonstrated that Sb was successfully doped into the crystal lattice of SnO2. To improve the dispersion of SSP composites in the acrylic resin, the as-prepared SSP was modified with sodium stearate. Fourier transform infrared spectra, thermogravimetric analysis, and transmission electron microscopy confirmed that stearate radicals existed on the surface of SSP in the form of physical adsorption. The hydrophilic degree of modified SSP was largely improved by water contact angle measurements. The properties (surface resistivity and mechanical properties) of the conductive coatings prepared by adding the obtained composites were investigated in detail. The modified SSP coatings exhibit more superior electrical conductivity due to their better dispersion in the matrix compared with SSP. Moreover, the obtained composite coatings present high pencil hardness of 4H–5H and excellent adhesion force, flexibility, and impact resistance.
Acknowledgments
This work was supported by Innovation Team of Six Talent Peaks of Jiangsu Province (XCL-CXTD-029), Key R&D Programs of Jiangsu Province (BE2017064), Key R&D Programs of Huaian City (HAG201630), and National Science Foundation of China (51674043, Funder Id: 10.13039/501100001809).
References
[1] Chang CC, Hsieh CY, Huang FH, Cheng LP. J. Appl. Polym. Sci. 2015, 132, 42411.10.1002/app.42411Search in Google Scholar
[2] Chen ZH, Tang Y, Yu F, Chen JH, Chen HH. J. Coat. Technol. Res. 2008, 5, 259–269.10.1007/s11998-007-9063-7Search in Google Scholar
[3] Chang CC, Huang FH, Hsieh CY, Chen CC, Cheng LP. J. Coat. Technol. Res. 2013, 10, 73–78.10.1007/s11998-012-9427-5Search in Google Scholar
[4] Li DF, Wang W, Wang HJ, Jia XS, Wang JY. Appl. Surf. Sci. 2008, 255, 581–584.10.1016/j.apsusc.2008.06.150Search in Google Scholar
[5] Baughman RH, Zakhidov AA, De Heer WA. Science 2002, 297, 787–792.10.1126/science.1060928Search in Google Scholar
[6] Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Gangloff L, Schnell J-P, Semet V, Thien Binh V, Groening O. J. Mater. Chem. 2004, 14, 933–943.10.1039/b314155cSearch in Google Scholar
[7] Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, St Clair TL. Chem. Phys. Lett. 2002, 364, 303–308.10.1016/S0009-2614(02)01326-XSearch in Google Scholar
[8] Wu S. Mater. Lett. 2007, 61, 3526–3530.10.1016/j.matlet.2006.11.128Search in Google Scholar
[9] Zhang DL, Deng ZB, Zhang JB, Chen LY. Mater. Chem. Phys. 2006, 98, 353−357.10.1016/j.matchemphys.2005.09.038Search in Google Scholar
[10] Lin W, Ma RX, Shao W, Liu B. Appl. Surf. Sci. 2007, 253, 5179−5183.10.1016/j.apsusc.2006.11.032Search in Google Scholar
[11] Novak I, Krupa I, Janigova I. Carbon 2005, 43, 841−848.10.1016/j.carbon.2004.11.019Search in Google Scholar
[12] Jin J, Leesirisan S, Song M. Compos. Sci. Technol. 2010, 70, 1544−1549.10.1016/j.compscitech.2010.05.017Search in Google Scholar
[13] Azim SS, Satheesh A, Ramu KK, Ramu S, Venkatachari G. Prog. Org. Coat. 2006, 55, 1−4.10.1016/j.porgcoat.2005.09.001Search in Google Scholar
[14] Chen F, Li X, Wu J, Shen Q, Schoenung JM, Zhang L. Scripta Mater. 2013, 68, 297–300.10.1016/j.scriptamat.2012.10.046Search in Google Scholar
[15] Granqvist CG, Hultåker A. Thin Solid Films. 2002, 411, 1–5.10.1016/S0040-6090(02)00163-3Search in Google Scholar
[16] Sharma S, Volosin AM, Schmitt D, Seo DK. J. Mater. Chem. A 2013, 1, 699–706.10.1039/C2TA00002DSearch in Google Scholar
[17] Rakhshani AE, Makdisi Y, Ramazaniyan HA. J. Appl. Phys. 1998, 83, 1049–1057.10.1063/1.366796Search in Google Scholar
[18] Kang T, Jang I, Oh S. Colloids Surf. A 2016, 501, 24–31.10.1016/j.colsurfa.2016.04.060Search in Google Scholar
[19] Xu C, Fang L, Huang Q, Yin B, Ruan H, Li D. Thin Solid Films 2013, 531, 255–260.10.1016/j.tsf.2012.12.039Search in Google Scholar
[20] Wu FQ, Yao C, Zhang GQ, Li X, Liu J. Ind. Mineral & Proc. 2008, 37, 7–10.Search in Google Scholar
[21] Hu P, Yang H. Appl. Clay Sci. 2010, 48, 368–374.10.1016/j.clay.2010.01.008Search in Google Scholar
[22] Li Y, Wang J, Feng B, Duan K, Weng J. J. Alloy Comp. 2015, 634, 37–42.10.1016/j.jallcom.2015.02.060Search in Google Scholar
[23] Hu Y, Zhang H, Yang H. J. Alloy Comp. 2008, 453, 292–297.10.1016/j.jallcom.2006.11.062Search in Google Scholar
[24] Wang LS, Lu HF, Hong RY, Feng WG. Powder Technol. 2012, 224, 124–128.10.1016/j.powtec.2012.02.039Search in Google Scholar
[25] Wang Y, Zheng J, Jiang F, Zhang M. J. Mater. Sci: Mater. Electron. 2014, 25, 4524–4530.10.1007/s10854-014-2199-1Search in Google Scholar
[26] Hu P, Yang H. Appl. Clay Sci. 2013, 83, 122–128.10.1016/j.clay.2013.08.025Search in Google Scholar
[27] Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T. Compos. Sci. Technol. 2013, 74, 85–90.10.1016/j.compscitech.2012.10.008Search in Google Scholar
[28] Ying F, Cui Y, Xue G, Qian H, Li A, Wang X, Zhang X, Jiang D. Polym. Bull. 2016, 73, 2815–2830.10.1007/s00289-016-1623-5Search in Google Scholar
[29] Shang Q, Hao S, Wang W, Fu D, Ma T. J. Adhesion Sci. Technol. 2013, 27, 2642–2652.10.1080/01694243.2013.798926Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co-ε-caprolactone)
- Morphological characterization, thermal, and mechanical properties of compatibilized high density polyethylene/polystyrene/organobentonite ternary nanocomposites
- Preparation and assembly
- Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters
- Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
- Poly (vinyl alcohol)/nano-diamond composite films and hydrogels prepared by gamma ray
- Engineering and processing
- Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method
- Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials
- Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical, dielectric, and rheological properties
- A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
- Analysis and quantitative estimation of phenolic antioxidants in polypropylene packaging for fat products
- Effects of ultrasonic injection molding conditions on the plate processing characteristics of PMMA
Articles in the same Issue
- Frontmatter
- Material properties
- Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co-ε-caprolactone)
- Morphological characterization, thermal, and mechanical properties of compatibilized high density polyethylene/polystyrene/organobentonite ternary nanocomposites
- Preparation and assembly
- Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters
- Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
- Poly (vinyl alcohol)/nano-diamond composite films and hydrogels prepared by gamma ray
- Engineering and processing
- Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method
- Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials
- Electric field-induced alignment of MWCNTs during the processing of PP/MWCNT composites: effects on electrical, dielectric, and rheological properties
- A molecular modeling study for miscibility of polyimide/polythene mixing systems with/without compatibilizer
- Analysis and quantitative estimation of phenolic antioxidants in polypropylene packaging for fat products
- Effects of ultrasonic injection molding conditions on the plate processing characteristics of PMMA