Startseite Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites

  • Caixin Li , Fei Huang , Juan Wang , Xiaorong Liang , Shiwen Huang und Ju Gu EMAIL logo
Veröffentlicht/Copyright: 13. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Waste cotton materials were used as source materials to prepare waste cotton nanocrystalline cellulose (WCNC) by optimized acid hydrolysis. The final hydrolysis products had an approximately 30 nm diameter, lengths mainly ranging from 400 nm to 800 nm, and a typical cellulose I crystal structure with a high degree of crystallinity. WCNC was further investigated to partially replace carbon black (CB) in natural rubber (NR) composites via coagulation. NR/CB/WCNC and NR/CB composites were prepared. Through comparisons of the morphology, mechanical properties, dynamic compression fatigue performance, thermal stability and soil biodegradation behaviour of the NR/CB/WCNC and NR/CB composites, WCNC was proven to perform efficiently. WCNC could increase tensile and tear strength as well as reduce heat build-up, and it presented slightly lower thermal stability and superior biodegradability. Moreover, a fine WCNC dispersion was achieved in NR/CB/WCNC. The observed reinforcement effects were evaluated based on the results of rubber processing analysis (RPA), thermogravimetric and scanning electron microscopic analyses of NR/CB/WCNC compared with the NR/CB composites.

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (no. 51173046) and the Science and Technology Program of Guangzhou, China (no. 201607010208).

References

[1] Guth E. J. Appl. Phys. 1945, 16, 20–25.10.1063/1.1707495Suche in Google Scholar

[2] Zhang A, Wang L, Lin Y, Mi X. J. Appl. Polym. Sci. 2006, 101, 1763–1774.10.1002/app.23516Suche in Google Scholar

[3] Angellier H, Molina-Boisseau S, Dufresne A. Macromolecules. 2005, 38, 9161–9170.10.1021/ma0512399Suche in Google Scholar

[4] Arroyo M, Lopez-Manchado M, Herrero B. Polymer 2003, 44, 2447–2453.10.1016/S0032-3861(03)00090-9Suche in Google Scholar

[5] Chen WJ. Express. Polym. Lett., 2014, 8, 659–668.10.3144/expresspolymlett.2014.69Suche in Google Scholar

[6] Jonas R, Farah LF. Polym. Degrad. Stabil. 1998, 59, 101–106 .10.1016/S0141-3910(97)00197-3Suche in Google Scholar

[7] Klemm D, Heublein B, Fink HP, Bohn A. Angew. Chem. Int. Edit. 2005, 44, 3358–3393.10.1002/anie.200460587Suche in Google Scholar PubMed

[8] Beck-Candanedo S, Roman M, Gray DG. Biomacromolecules. 2005, 6, 1048–1054.10.1021/bm049300pSuche in Google Scholar PubMed

[9] Neto WPF, Mariano M, Silva ISVD, Silvério HA, Putaux JL, Otaguro H, Pasquini D, Dufresne A. Carbohyd Polym, 2016, 153, 143–152.10.1016/j.carbpol.2016.07.073Suche in Google Scholar PubMed

[10] Angles MN, Dufresne A. Macromolecules 2001, 34, 2921–2931.10.1021/ma001555hSuche in Google Scholar

[11] Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P. Polymer 2011, 52, 1532–1538.10.1016/j.polymer.2011.02.004Suche in Google Scholar

[12] Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan S. J. Mater. Sci. 2010, 45, 1–33.10.1007/s10853-009-3874-0Suche in Google Scholar

[13] Matos Ruiz M, Cavaille JY, Dufresne A, Gerard JF, Graillat C. Compos. Interface. 2000, 7, 117–131.10.1163/156855400300184271Suche in Google Scholar

[14] Fan JS, Li YH. Carbohydr. Polym. 2012, 88, 1184–1188.10.1016/j.carbpol.2012.01.081Suche in Google Scholar

[15] Wyk JPHV. Energy Fuels 2002, 16, 1277–1279.10.1021/ef020061dSuche in Google Scholar

[16] Swatloski RP, Spear SK, Holbrey JD, Rogers RD. J. Am. Chem. Soc. 2002, 124, 4974–4975.10.1021/ja025790mSuche in Google Scholar PubMed

[17] Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y. Carbohydr. Polym. 2011, 83, 1804–1811.10.1016/j.carbpol.2010.10.040Suche in Google Scholar

[18] Bai W, Li K. Compos. Part A-Appl. S. 2009, 40, 1597–1605.10.1016/j.compositesa.2009.07.006Suche in Google Scholar

[19] Visakh PM, Thomas S, Oksman K, Mathew AP. Compos. Part A-Appl. S. 2012, 43, 735–741.10.1016/j.compositesa.2011.12.015Suche in Google Scholar

[20] Bendahou A, Kaddami H, Dufresne A. Eur. Polym. J. 2010, 46, 609–620.10.1016/j.eurpolymj.2009.12.025Suche in Google Scholar

[21] Pasquini D, Teixeira EDM, Curvelo AADS, Belgacem MN, Dufresne A. Ind. Crop. Prod. 2010, 32, 486–490.10.1016/j.indcrop.2010.06.022Suche in Google Scholar

[22] Cao X, Xu C, Wang Y, Liu Y, Liu YH, Chen YK. Polym. Test. 2013, 32, 819–826.10.1016/j.polymertesting.2013.04.005Suche in Google Scholar

[23] Cao X, Xu C, Liu Y, Chen YK. Carbohydr. Polym. 2013, 92, 69–76.10.1016/j.carbpol.2012.09.054Suche in Google Scholar PubMed

[24] Abraham E, Deepa B, Pothan LA, John M, Narine SS, Thomas S, Anandjiwala R. Cellulose 2013, 20, 417–427.10.1007/s10570-012-9830-1Suche in Google Scholar

[25] Deng F, Ge X, Zhang Y, Li MC, Cho UR. J. Appl. Polym. Sci. 2015, 132, 42666.10.1002/app.42666Suche in Google Scholar

[26] Deng F, Zhang Y, Ge X, Li MC, Li XX, Cho UR. J. Appl. Polym. Sci. 2016, 133, 43087.10.1002/app.43840Suche in Google Scholar

[27] Haghighat M, Zadhoush A, Khorasani SN. J. Appl. Polym. Sci. 2005, 96, 2203–2211.10.1002/app.21691Suche in Google Scholar

[28] Bondeson D, Mathew A, Oksman K. Cellulose 2006, 13, 171–180.10.1007/s10570-006-9061-4Suche in Google Scholar

[29] Zhao X, Xiao H, Wang Q, Ping P, Sun J. Ind. Crop. Prod. 2013, 50, 383–390.10.1016/j.indcrop.2013.07.064Suche in Google Scholar

[30] Jeihanipour A, Taherzadeh MJ. Bioresour. Technol. 2009, 100, 1007–1010.10.1016/j.biortech.2008.07.020Suche in Google Scholar PubMed

[31] Hamad W. Can. J. Chem. Eng. 2006, 84, 513–519.10.1002/cjce.5450840501Suche in Google Scholar

[32] Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Edit. 2011, 50, 5438–5466.10.1002/anie.201001273Suche in Google Scholar PubMed

[33] Segal L, Creely J, Martin A, Conrad C. Text. Res. J. 1959, 29, 786–794.10.1177/004051755902901003Suche in Google Scholar

[34] Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM. J. Appl. Polym. Sci. 2013, 128, 3220–3230.10.1002/app.38524Suche in Google Scholar

[35] Sobkowicz MJ, Braun B, Dorgan JR. Green Chem. 2009, 11, 680–682.10.1039/b817223dSuche in Google Scholar

[36] Sekiguchi Y, Sawatari C, Kondo T. Carbohydr. Polym. 2003, 53, 145–153.10.1016/S0144-8617(03)00050-XSuche in Google Scholar

[37] Cha R, He Z, Ni Y. Carbohydr. Polym. 2012, 88, 713–718.10.1016/j.carbpol.2012.01.026Suche in Google Scholar

[38] Fengel D, Strobel C. Acta. Polym. Sin. 1994, 45, 319–324.10.1002/actp.1994.010450406Suche in Google Scholar

[39] Li R, Fei J, Cai Y, Li Y, Feng J, Yao J. Carbohydr. Polym. 2009, 76, 94–99.10.1016/j.carbpol.2008.09.034Suche in Google Scholar

[40] Nishiyama Y, Sugiyama J, Chanzy H, Langan P. J. Am. Chem. Soc. 2003, 125, 14300–14306.10.1021/ja037055wSuche in Google Scholar PubMed

[41] Payne AR, Whittaker RE. Rubber Chem. Technol. 1971, 44, 440–478.10.5254/1.3547375Suche in Google Scholar

[42] Rattanasom N, Prasertsri S, Ruangritnumchai T. Polym. Test. 2009, 28, 8–12.10.1016/j.polymertesting.2008.08.004Suche in Google Scholar

[43] Thakore S. J. Appl. Polym. Sci. 2014, 131, 318–323.10.1002/app.40632Suche in Google Scholar

[44] Horrocks AR, Mwila J, Miraftab M, Liu M, Chohan SS. Polym. Degrad. Stabil. 1999, 65, 25–36.10.1016/S0141-3910(98)00213-4Suche in Google Scholar

[45] Chuayjuljit S, Suuthai S, Tunwattanaseree C, Charuchinda S. J. Reinf. Plast. Comp. 2008, 28, 1245–1254.10.1177/0731684408089129Suche in Google Scholar

Received: 2016-10-23
Accepted: 2017-3-14
Published Online: 2017-4-13
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0382/html?lang=de
Button zum nach oben scrollen