Home Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite
Article
Licensed
Unlicensed Requires Authentication

Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite

  • Bai Xue , Lanxiang Ji EMAIL logo , Jianguo Deng and Junhua Zhang EMAIL logo
Published/Copyright: April 27, 2017
Become an author with De Gruyter Brill

Abstract

In this paper, highly electrically conductive polymeric composites were obtained by low-temperature expandable graphite (LTEG) filling poly(L-lactic acid) (PLLA) in the presence of ascorbic acid via an in situ exfoliation and subsequent reduction process during the melt blending. The electrical conductivity of the PLLA/reduced and expanded graphite (R-EG) composites was determined by a four-point probe resistivity determiner and compared with that of the PLLA/expanded graphite (EG) composites. The percolation threshold of PLLA/R-EG blends decreased from 11.2 wt% to 7.1 wt%, which illustrated the superiority of R-EG to the electrically conducting ability of PLLA composites. At the graphite concentration near the percolation threshold, the electrical conductivity of PLLA/R-EG composites was much higher than that of PLLA/EG composites. The effective in situ expansion and reduction of LTEG were crucial to the overall electrical conductivity of the blends, which was confirmed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis. Dynamic rheology analysis confirmed that the connected networks that were the major cause of the rapid increase in electrical conductivity were much more easily formed for PLLA/R-EG blends than those of PLLA/EG blends. Thermogravimetric analysis (TGA) was applied to determine the decomposition and thermal stability of the PLLA/R-EG composites.

References

[1] Chang J, Ho A, Chin WK. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 322–329.10.1002/polb.21028Search in Google Scholar

[2] Han SH, Yeom YS, Ko JG, Kang HC, Yoon HG. Compos. Sci. Technol. 2015, 117, 351–356.10.1016/j.compscitech.2015.07.002Search in Google Scholar

[3] Song J, Zhang W, Yang W, Xu J, Lai J. J. Polym. Res. 2014, 21, 556–563.10.1007/s10965-014-0556-7Search in Google Scholar

[4] Wu X, Qiu J, Liu P, Sakai E. J. Polym. Res. 2013, 20, 284–291.10.1007/s10965-013-0284-4Search in Google Scholar

[5] Zaman I, Manshoor B, Khalid A, Araby S. J. Polym. Res. 2014, 21, 429–439.10.1007/s10965-014-0429-0Search in Google Scholar

[6] Kasgoz A, Akın D, Durmus A. Polym. Eng. Sci. 2012, 52, 2645–2653.10.1002/pen.23221Search in Google Scholar

[7] Zhou S, Chen Y, Zou H, Liang M. Thermochim. Acta 2013, 566, 84–91.10.1016/j.tca.2013.05.027Search in Google Scholar

[8] Zhou S, Lei Y, Zou H, Liang M. Polym. Compos. 2013, 34, 1816–1823.10.1002/pc.22586Search in Google Scholar

[9] Xue B, Feng T, Zhou S, Bao J. J. Polym. Res. 2014, 21, 1–8.10.1007/s10965-014-0543-zSearch in Google Scholar

[10] Xue B, Ye J, Zhang J. J. Polym. Res. 2015, 22, 1–9.10.1007/s10965-014-0642-xSearch in Google Scholar

[11] Yi XS, Zhang JF, Zheng Q, Pan YJ. Appl. Polym. Sci. 2000, 77, 494–499.10.1002/(SICI)1097-4628(20000718)77:3<494::AID-APP4>3.0.CO;2-KSearch in Google Scholar

[12] Kim DJ, Seo KH, Hong KH, Kim SY. Polym. Eng. Sci. 1999, 39, 500–507.10.1002/pen.11440Search in Google Scholar

[13] Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B. Polymer 2008, 49, 3500–3509.10.1016/j.polymer.2008.06.010Search in Google Scholar

[14] McCullen SD, Stano KL, Stevens DR, Roberts WA, Monteiro-Riviere NA, Clarke LI, Gorga RE. J. Appl. Polym. Sci. 2007, 105, 1668–1678.10.1002/app.26288Search in Google Scholar

[15] Shi SL, Zhang LZ, Li JS. J. Polym. Res. 2009, 16, 395–399.10.1007/s10965-008-9241-zSearch in Google Scholar

[16] Zhao J, Lu Z, Shao M, Yan D, Wei M, Evans DG, Duan X. RSC Adv. 2013, 3, 1045–1049.10.1039/C2RA22566BSearch in Google Scholar

[17] Wang Y, Zhang HJ, Admar AS, Luo J, Wong CC, Borgna A, Lin J. RSC Adv. 2012, 2, 5748–5753.10.1039/c2ra20472jSearch in Google Scholar

[18] Gao JF, Yan DX, Huang HD, Zeng XB, Zhang WQ, Li ZM. J. Polym. Res. 2011, 18, 2239–2243.10.1007/s10965-011-9637-zSearch in Google Scholar

[19] Deng H, Ji M, Yan D, Fu S, Duan L, Zhang M, Fu Q. J. Mater. Chem. A 2014, 2, 10048–10057.10.1039/C4TA01073FSearch in Google Scholar

[20] Gao X, Zhang S, Mai F, Lin L, Deng Y, Deng H, Fu Q. J. Mater. Chem. 2011, 21, 6401–6408.10.1039/c0jm04543hSearch in Google Scholar

[21] Antar Z, Feller JF, Noel H, Glouannec P, Elleuch K. Mater. Lett. 2012, 67, 210–214.10.1016/j.matlet.2011.09.060Search in Google Scholar

[22] Sabzi M, Jiang L, Liu F, Ghasemi I, Atai M. J. Mater. Chem. A 2013, 1, 8253–8261.10.1039/c3ta11021dSearch in Google Scholar

[23] Lee Y, Kim D, Seo J, Han H, Khan SB. Polym. Int. 2013, 62, 1386–1394.10.1002/pi.4434Search in Google Scholar

[24] Uhl FM, Yao Q, Wilkie CA. Polym. Adv. Technol. 2005, 16, 533–540.10.1002/pat.612Search in Google Scholar

[25] Zhao YF, Xiao M, Wang SJ, Ge X, Meng YZ. Compos. Sci. Technol. 2007, 67, 2528–2534.10.1016/j.compscitech.2006.12.009Search in Google Scholar

[26] Chattopadhyay DK, Webster DC. Prog. Polym. Sci. 2009, 34, 1068–1133.10.1016/j.progpolymsci.2009.06.002Search in Google Scholar

[27] Modesti M, Lorenzetti A, Simioni F, Camino G. Polym. Degrad. Stabil. 2002, 77, 195–202.10.1016/S0141-3910(02)00034-4Search in Google Scholar

[28] Chiu HT, Hsiao YK. J. Polym. Res. 2006, 13, 153–160.10.1007/s10965-005-9020-zSearch in Google Scholar

[29] Liu X, Wu Q. Eur. Polym. J. 2002, 38, 1383–1389.10.1016/S0014-3057(01)00304-4Search in Google Scholar

[30] Fukushima H, Drzal LT, Rook BP, Rich MJ. J. Anal. Calorim. 2006, 85, 235–238.10.1007/s10973-005-7344-xSearch in Google Scholar

[31] Chen G, Wu D, Weng W, Wu C. Carbon 2003, 41, 619–621.10.1016/S0008-6223(02)00409-8Search in Google Scholar

[32] Anderson KS, Hillmyer MA. Polymer 2006, 47, 2030–2035.10.1016/j.polymer.2006.01.062Search in Google Scholar

[33] Lim LT, Auras R, Rubino M. Prog. Polym. Sci. 2008, 33, 820–852.10.1016/j.progpolymsci.2008.05.004Search in Google Scholar

[34] Mehta R, Kumar V, Bhunia H, Upadhyay SN. Polym. Rev. 2005, 45, 325–349.10.1080/15321790500304148Search in Google Scholar

[35] Vainionpää S, Rokkanen P, Törmälä P. Prog. Polym. Sci. 1989, 14, 679–716.10.1016/0079-6700(89)90013-0Search in Google Scholar

[36] Penning JP, Dijkstra H, Pennings AJ. Polymer 1993, 34, 942–951.10.1016/0032-3861(93)90212-SSearch in Google Scholar

[37] Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C. Polymer 1997, 38, 79–85.10.1016/S0032-3861(96)00486-7Search in Google Scholar

[38] Penning JP, Grijpma DW, Pennings AJ. J. Mater. Sci. Lett. 1993, 12, 1048–1051.10.1007/BF00420216Search in Google Scholar

[39] Ying Z, Lin X, Qi Y, Luo J. Mater. Res. Bull. 2008, 43, 2677–2686.10.1016/j.materresbull.2007.10.027Search in Google Scholar

[40] Matsuo Y, Miyabe T, Fukutsuka T, Yosohiro S. Carbon 2007, 45, 1005–1012.10.1016/j.carbon.2006.12.023Search in Google Scholar

[41] Stankovich S, Piner RD, Nguyen SBT, Ruoff RS. Carbon 2006, 44, 3342–3347.10.1016/j.carbon.2006.06.004Search in Google Scholar

[42] Yasmin A, Luo JJ, Daniel IM. Compos. Sci. Technol. 2006, 66, 1182–1189.10.1016/j.compscitech.2005.10.014Search in Google Scholar

[43] Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA. Polym. Degrad. Stabil. 2005, 89, 70–84.10.1016/j.polymdegradstab.2005.01.004Search in Google Scholar

[44] Miyata T, Masuko T. Polymer, 1997, 38, 4003–4009.10.1016/S0032-3861(96)00987-1Search in Google Scholar

[45] King JA, Johnson BA, Via MD, Ciarkowski CJ. Polym. Compos. 2010, 31, 497–506.10.1002/pc.20830Search in Google Scholar

[46] Zheng W, Wong SC. Compos. Sci. Technol. 2003, 63, 225–235.10.1016/S0266-3538(02)00201-4Search in Google Scholar

Received: 2016-8-7
Accepted: 2017-3-20
Published Online: 2017-4-27
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0293/html
Scroll to top button