Abstract
Waste cotton materials were used as source materials to prepare waste cotton nanocrystalline cellulose (WCNC) by optimized acid hydrolysis. The final hydrolysis products had an approximately 30 nm diameter, lengths mainly ranging from 400 nm to 800 nm, and a typical cellulose I crystal structure with a high degree of crystallinity. WCNC was further investigated to partially replace carbon black (CB) in natural rubber (NR) composites via coagulation. NR/CB/WCNC and NR/CB composites were prepared. Through comparisons of the morphology, mechanical properties, dynamic compression fatigue performance, thermal stability and soil biodegradation behaviour of the NR/CB/WCNC and NR/CB composites, WCNC was proven to perform efficiently. WCNC could increase tensile and tear strength as well as reduce heat build-up, and it presented slightly lower thermal stability and superior biodegradability. Moreover, a fine WCNC dispersion was achieved in NR/CB/WCNC. The observed reinforcement effects were evaluated based on the results of rubber processing analysis (RPA), thermogravimetric and scanning electron microscopic analyses of NR/CB/WCNC compared with the NR/CB composites.
Acknowledgements
The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (no. 51173046) and the Science and Technology Program of Guangzhou, China (no. 201607010208).
References
[1] Guth E. J. Appl. Phys. 1945, 16, 20–25.10.1063/1.1707495Search in Google Scholar
[2] Zhang A, Wang L, Lin Y, Mi X. J. Appl. Polym. Sci. 2006, 101, 1763–1774.10.1002/app.23516Search in Google Scholar
[3] Angellier H, Molina-Boisseau S, Dufresne A. Macromolecules. 2005, 38, 9161–9170.10.1021/ma0512399Search in Google Scholar
[4] Arroyo M, Lopez-Manchado M, Herrero B. Polymer 2003, 44, 2447–2453.10.1016/S0032-3861(03)00090-9Search in Google Scholar
[5] Chen WJ. Express. Polym. Lett., 2014, 8, 659–668.10.3144/expresspolymlett.2014.69Search in Google Scholar
[6] Jonas R, Farah LF. Polym. Degrad. Stabil. 1998, 59, 101–106 .10.1016/S0141-3910(97)00197-3Search in Google Scholar
[7] Klemm D, Heublein B, Fink HP, Bohn A. Angew. Chem. Int. Edit. 2005, 44, 3358–3393.10.1002/anie.200460587Search in Google Scholar PubMed
[8] Beck-Candanedo S, Roman M, Gray DG. Biomacromolecules. 2005, 6, 1048–1054.10.1021/bm049300pSearch in Google Scholar PubMed
[9] Neto WPF, Mariano M, Silva ISVD, Silvério HA, Putaux JL, Otaguro H, Pasquini D, Dufresne A. Carbohyd Polym, 2016, 153, 143–152.10.1016/j.carbpol.2016.07.073Search in Google Scholar PubMed
[10] Angles MN, Dufresne A. Macromolecules 2001, 34, 2921–2931.10.1021/ma001555hSearch in Google Scholar
[11] Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P. Polymer 2011, 52, 1532–1538.10.1016/j.polymer.2011.02.004Search in Google Scholar
[12] Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan S. J. Mater. Sci. 2010, 45, 1–33.10.1007/s10853-009-3874-0Search in Google Scholar
[13] Matos Ruiz M, Cavaille JY, Dufresne A, Gerard JF, Graillat C. Compos. Interface. 2000, 7, 117–131.10.1163/156855400300184271Search in Google Scholar
[14] Fan JS, Li YH. Carbohydr. Polym. 2012, 88, 1184–1188.10.1016/j.carbpol.2012.01.081Search in Google Scholar
[15] Wyk JPHV. Energy Fuels 2002, 16, 1277–1279.10.1021/ef020061dSearch in Google Scholar
[16] Swatloski RP, Spear SK, Holbrey JD, Rogers RD. J. Am. Chem. Soc. 2002, 124, 4974–4975.10.1021/ja025790mSearch in Google Scholar PubMed
[17] Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y. Carbohydr. Polym. 2011, 83, 1804–1811.10.1016/j.carbpol.2010.10.040Search in Google Scholar
[18] Bai W, Li K. Compos. Part A-Appl. S. 2009, 40, 1597–1605.10.1016/j.compositesa.2009.07.006Search in Google Scholar
[19] Visakh PM, Thomas S, Oksman K, Mathew AP. Compos. Part A-Appl. S. 2012, 43, 735–741.10.1016/j.compositesa.2011.12.015Search in Google Scholar
[20] Bendahou A, Kaddami H, Dufresne A. Eur. Polym. J. 2010, 46, 609–620.10.1016/j.eurpolymj.2009.12.025Search in Google Scholar
[21] Pasquini D, Teixeira EDM, Curvelo AADS, Belgacem MN, Dufresne A. Ind. Crop. Prod. 2010, 32, 486–490.10.1016/j.indcrop.2010.06.022Search in Google Scholar
[22] Cao X, Xu C, Wang Y, Liu Y, Liu YH, Chen YK. Polym. Test. 2013, 32, 819–826.10.1016/j.polymertesting.2013.04.005Search in Google Scholar
[23] Cao X, Xu C, Liu Y, Chen YK. Carbohydr. Polym. 2013, 92, 69–76.10.1016/j.carbpol.2012.09.054Search in Google Scholar PubMed
[24] Abraham E, Deepa B, Pothan LA, John M, Narine SS, Thomas S, Anandjiwala R. Cellulose 2013, 20, 417–427.10.1007/s10570-012-9830-1Search in Google Scholar
[25] Deng F, Ge X, Zhang Y, Li MC, Cho UR. J. Appl. Polym. Sci. 2015, 132, 42666.10.1002/app.42666Search in Google Scholar
[26] Deng F, Zhang Y, Ge X, Li MC, Li XX, Cho UR. J. Appl. Polym. Sci. 2016, 133, 43087.10.1002/app.43840Search in Google Scholar
[27] Haghighat M, Zadhoush A, Khorasani SN. J. Appl. Polym. Sci. 2005, 96, 2203–2211.10.1002/app.21691Search in Google Scholar
[28] Bondeson D, Mathew A, Oksman K. Cellulose 2006, 13, 171–180.10.1007/s10570-006-9061-4Search in Google Scholar
[29] Zhao X, Xiao H, Wang Q, Ping P, Sun J. Ind. Crop. Prod. 2013, 50, 383–390.10.1016/j.indcrop.2013.07.064Search in Google Scholar
[30] Jeihanipour A, Taherzadeh MJ. Bioresour. Technol. 2009, 100, 1007–1010.10.1016/j.biortech.2008.07.020Search in Google Scholar PubMed
[31] Hamad W. Can. J. Chem. Eng. 2006, 84, 513–519.10.1002/cjce.5450840501Search in Google Scholar
[32] Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Edit. 2011, 50, 5438–5466.10.1002/anie.201001273Search in Google Scholar PubMed
[33] Segal L, Creely J, Martin A, Conrad C. Text. Res. J. 1959, 29, 786–794.10.1177/004051755902901003Search in Google Scholar
[34] Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM. J. Appl. Polym. Sci. 2013, 128, 3220–3230.10.1002/app.38524Search in Google Scholar
[35] Sobkowicz MJ, Braun B, Dorgan JR. Green Chem. 2009, 11, 680–682.10.1039/b817223dSearch in Google Scholar
[36] Sekiguchi Y, Sawatari C, Kondo T. Carbohydr. Polym. 2003, 53, 145–153.10.1016/S0144-8617(03)00050-XSearch in Google Scholar
[37] Cha R, He Z, Ni Y. Carbohydr. Polym. 2012, 88, 713–718.10.1016/j.carbpol.2012.01.026Search in Google Scholar
[38] Fengel D, Strobel C. Acta. Polym. Sin. 1994, 45, 319–324.10.1002/actp.1994.010450406Search in Google Scholar
[39] Li R, Fei J, Cai Y, Li Y, Feng J, Yao J. Carbohydr. Polym. 2009, 76, 94–99.10.1016/j.carbpol.2008.09.034Search in Google Scholar
[40] Nishiyama Y, Sugiyama J, Chanzy H, Langan P. J. Am. Chem. Soc. 2003, 125, 14300–14306.10.1021/ja037055wSearch in Google Scholar PubMed
[41] Payne AR, Whittaker RE. Rubber Chem. Technol. 1971, 44, 440–478.10.5254/1.3547375Search in Google Scholar
[42] Rattanasom N, Prasertsri S, Ruangritnumchai T. Polym. Test. 2009, 28, 8–12.10.1016/j.polymertesting.2008.08.004Search in Google Scholar
[43] Thakore S. J. Appl. Polym. Sci. 2014, 131, 318–323.10.1002/app.40632Search in Google Scholar
[44] Horrocks AR, Mwila J, Miraftab M, Liu M, Chohan SS. Polym. Degrad. Stabil. 1999, 65, 25–36.10.1016/S0141-3910(98)00213-4Search in Google Scholar
[45] Chuayjuljit S, Suuthai S, Tunwattanaseree C, Charuchinda S. J. Reinf. Plast. Comp. 2008, 28, 1245–1254.10.1177/0731684408089129Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions
- Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites
- Influence of the polyacrylonitrile proportion on the fabricated UF blend membranes’ performance for humic acid removal
- Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites
- Conductive mechanism of carbon black/polyimide composite films
- Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility
- Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite
- Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin
- Fabrication of bilayer resin-bonded fixed abrasive wires using the pultrusion process
- Guidelines for balancing the flow in extrusion dies: the influence of the material rheology
Articles in the same Issue
- Frontmatter
- Original articles
- Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions
- Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites
- Influence of the polyacrylonitrile proportion on the fabricated UF blend membranes’ performance for humic acid removal
- Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites
- Conductive mechanism of carbon black/polyimide composite films
- Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility
- Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite
- Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin
- Fabrication of bilayer resin-bonded fixed abrasive wires using the pultrusion process
- Guidelines for balancing the flow in extrusion dies: the influence of the material rheology