Startseite Cavitation desulfurization in vulcanized rubber recycling under ultra-high pressure water jet
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cavitation desulfurization in vulcanized rubber recycling under ultra-high pressure water jet

  • Shouxu Song , Hui Zha und Haihong Huang EMAIL logo
Veröffentlicht/Copyright: 27. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ultra-high pressure water jet is proposed for recycling of vulcanized waste rubber, and cavitation desulfurization in the recycling process is analyzed. The chemical effects of mechanical shearing, pyrolysis, free radical oxidation, and supercritical oxidation produced by bubble collapse are considered the main causes of desulfurization. Scanning electron microscopy, Fourier transform infrared spectrometry, differential scanning calorimetry, nuclear magnetic resonance test, and X-ray photoelectron spectroscopy are used to determine the performance of rubber powder. Gel fraction of rubber powder is measured to analyze the effect of jet pressure on desulfurization. Results indicate that the vulcanized rubber could achieve partial desulfurization. The glass transition temperature of the rubber powder slightly increases after crushing. With the increase of jet pressure, the gel fraction of rubber powder initially decreases and then increases, as well as achieves a minimum value at the jet pressure of nearly 220 MPa, which is ideal for desulfurization.

Award Identifier / Grant number: 51175139

Funding statement: This work was financially supported by the National Natural Science Foundation of China (51175139).

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51175139).

References

[1] Ishiaku US, Chong CS, Ismail H. Polym. Test. 1999, 18, 621–633.10.1016/S0142-9418(98)00060-9Suche in Google Scholar

[2] Tzoganakis C, Zhang Q. GPEC 2004, 49, 1–11.10.1002/j.2325-3584.2004.tb02609.xSuche in Google Scholar

[3] Isayev AI, Yushanov SP, Chen J. J. Appl. Polym. Sci. 1996, 59, 803–813.10.1002/(SICI)1097-4628(19960131)59:5<803::AID-APP7>3.0.CO;2-#Suche in Google Scholar

[4] Scuracchio CH, Waki DA, da Silva MLCP. J. Therm. Anal. Calorim. 2007, 87, 893–897.10.1007/s10973-005-7419-8Suche in Google Scholar

[5] Zhao WJ, Zhang X, Chen DS. China Rubber/Plast. Technol. Equip. 2000, 26, 7–12.Suche in Google Scholar

[6] Nima S, Hamid A, George I. J. Appl. Polym. Sci. 2006, 102, 119–127.10.1002/app.23259Suche in Google Scholar

[7] Saleh TA, Al-Saadi AA. Surf. Interface Anal. 2015, 47, 785–792.10.1002/sia.5775Suche in Google Scholar

[8] Jiang GM, Zhao SH, Luo JY, Wang YQ, Yu WY, Zhang CR. J. Appl. Polym. Sci. 2010, 116, 2768–2774.Suche in Google Scholar

[9] Saleh TA. J. Water Supply Res. T. 2015, 64, 892–903.10.2166/aqua.2015.050Suche in Google Scholar

[10] Saleh TA, Gupta VK. Adv. Colloid Interfac. 2014, 211, 93–101.10.1016/j.cis.2014.06.006Suche in Google Scholar

[11] Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. RSC Adv. 2012, 2, 6380–6388.10.1039/c2ra20340eSuche in Google Scholar

[12] Yang MG, Wang YL, Kang C, Yu F. Chin. J. High Press. Phys. 2010, 24, 286–292.Suche in Google Scholar

[13] Flint EB, Suslick KS. Science 1991, 253, 1397–1399.10.1126/science.253.5026.1397Suche in Google Scholar

[14] Lin Z, Peng SX, Zhao XB, Zhang ER, Wu T. Spec. Purpose Rubber Prod. 2013, 34, 62–65.Suche in Google Scholar

[15] Zeng HQ, Luo YG, Wen BC, Lian YX, Jiang YQ. Appl. Acoust. 2002, 21, 35–39.Suche in Google Scholar

[16] Li YH, Zhao SH, Wang YQ. Polym. Degrad. Stabil. 2011, 96, 1662–1668.10.1016/j.polymdegradstab.2011.06.011Suche in Google Scholar

[17] Li J, Chen HS. Tribology 2008, 28, 311–315.10.3736/jcim20080318Suche in Google Scholar PubMed

[18] Deng SS, Lei FD, Li ZJ, Shen YH. Environ. Prot. 2011, 29, 81–84.Suche in Google Scholar

[19] Zhang FH, Liao ZF, Tang CL, Yang L. J. Chongqing Univ. 2004, 27, 32–35.Suche in Google Scholar

[20] Yun J, Isayev AI, Kim SH, Tapale M. J. Appl. Polym. Sci. 2003, 88, 434–441.10.1002/app.11741Suche in Google Scholar

Received: 2016-4-1
Accepted: 2016-8-20
Published Online: 2016-9-27
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0103/pdf?lang=de
Button zum nach oben scrollen