Startseite Thermodynamic modeling of polyamide-6 (PA-6)/cellulose acetate (CA) blend membrane prepared via casting technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic modeling of polyamide-6 (PA-6)/cellulose acetate (CA) blend membrane prepared via casting technique

  • Ayman El-Gendi EMAIL logo und Heba Abdallah
Veröffentlicht/Copyright: 17. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Thermodynamic behavior of a ternary system with one low molecular weight component, formic acid (FA) as the solvent, water (non-solvent), and two high molecular weight polymers [polyamide-6 (PA-6) and cellulose acetate (CA)] was investigated using an extended modified Flory-Huggins model. Where, all chemicals were purchased from Leuna Werke AG (Germany). The model was solved by MATLAB SIMULINK software manufactured in the USA. The predicted results from the model explained that the miscibility of the two blend polymers, PA-6 and CA, completed over all compositions at room temperature, and the minimum point where the miscibility of the two polymers completed was in the composition of 0.2 volume fraction of PA-6 at Gibbs free energy change on mixing (ΔGm) of -1.74015 kJ/mole. The critical temperature (Tc) for superiority properties of the polymer blend solution are in the range between the upper critical saturation temperature (UCST) 323K and the lower critical saturation temperature (LCST) 338K. The diffusion model on the solution of the immersion precipitation process in the coagulation bath indicates that the solvent volume fractions increase with time, while the polymer solution volume fraction decreases, due to solvent removal from the polymer solution and membrane formation. According to the mathematical model, it was found that the annealing temperature can affect the densification of the membrane top layer. However, the heat treatment process leads to a decrease in thickness of the membrane bottom layer, as a result of reduced and distributed membrane pores.


Corresponding author: Ayman El-Gendi, National Research Center, Chemical Engineering and Pilot Plant Department, El Buhouth Street, Dokki, Cairo 12311, Egypt, e-mail:

References

[1] Valerie GA, Mayes AM. Macromolecules 2001, 34, 1894–1907.10.1021/ma000712+Suche in Google Scholar

[2] Abdallah H, Ali SS. International Review of Chemical Engineering (I.RE.CH.E.) 2012, 4, 455–465.Suche in Google Scholar

[3] Randon J, Mardilovich PP, Govyadinov AN, Paterson R. J. Colloid Interf. Sci. 1995, 169, 335–341.Suche in Google Scholar

[4] Barani H, Hajir Bahrami S. Macromol. Res. 2007, 15, 605–609.Suche in Google Scholar

[5] Bazargan AM, Gholamvand Z, Naghavi M, Shayegh MR, Sadrnezhaad SK. Funct. Mater. Lett. 2009, 2, 113–119.Suche in Google Scholar

[6] Wang XL, Qian HJ, Chen LJ, Yuan Lu Z, Sheng Li Z. J. Membr. Sci. 2008, 311, 251–258.Suche in Google Scholar

[7] Wa K, Leea D, Chanb PK, Feng X. Chem. Eng. Sci. 2004, 59, 1491–1504.Suche in Google Scholar

[8] Mulder MHV, Basic Principles of Membrane Technology, Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.Suche in Google Scholar

[9] Altinkaya SA, Ozbas B. J. Membr. Sci.2004, 230, 71–89.Suche in Google Scholar

[10] Menut P, Pochat-Bohatier C, Deratani A, Dupuy C, Guilbert S. Desalination 2002, 145, 11–16.10.1016/S0011-9164(02)00323-5Suche in Google Scholar

[11] Ali SS, Abdallah H. International Review of Chemical Engineering (I.RE.CH.E.) 2012, 4, 316–323.Suche in Google Scholar

[12] Miller-Chou BA, Koenig JL. Prog. Polym. Sci. 2003, 28, 1223–1270.Suche in Google Scholar

[13] Yip Y, McHugh AJ. J. Membr. Sci. 2006, 271, 163–176.Suche in Google Scholar

[14] Leea H, Krantzb WB, Tak Hwang S. J. Membr. Sci. 2010, 354, 74–85.Suche in Google Scholar

[15] Krantza WB, Greenbergb AR, Hellman DJ. J. Membr. Sci. 2010, 354, 178–188.Suche in Google Scholar

[16] Chang BH, Chan Bao Y. Chem. Eng. Sci. 2003, 58, 2931–2936.Suche in Google Scholar

[17] Rawajefa A. Desalination 2005, 179, 265–272.10.1016/j.desal.2004.12.024Suche in Google Scholar

[18] El-Gendi A, Ali SS, Ahmed SA, Talaat HA. Membr. Wat. Treat. 2012, 3, 185–200.Suche in Google Scholar

[19] Hansen CM, Hanson Solubility Parameters: A User’sHandbook. CRC Press: Boca Raton, FL, 2000.Suche in Google Scholar

[20] Bouyera D, Werapuna W, Pochat-Bohatiera C, Deratani A. J. Membr. Sci. 2010, 349, 97–112.Suche in Google Scholar

[21] Khare VP, Greenberg AR, Krantz WB. J. Membr. Sci. 2005, 258, 140–156.Suche in Google Scholar

[22] Hea X, Chenb C, Jiangc Z, Su Y. J. Membr. Sci. 2011, 371, 108–116.Suche in Google Scholar

[23] Min J, Su M. Appl. Therm. Eng. 2010, 30, 991–997.Suche in Google Scholar

[24] Velu S, Muruganandam L. J. Chem. Bio. Phy. Sci. Sec. B 2011–2012, 2, 163–171.Suche in Google Scholar

[25] Ghaemi N, Madaeni SS, Alizadeh A, Daraei P, Vatanpour V, Falsafi M. Desalination 2012, 290, 99–106.10.1016/j.desal.2012.01.013Suche in Google Scholar

[26] Ganesh BM, Isloor AM, Padaki M. Desalination 2010, 287, 103–108.10.1016/j.desal.2011.09.047Suche in Google Scholar

[27] Gedde UW, Polymer Physics, Kluwer: Dordrecht, 1999.10.1007/978-94-011-0543-9Suche in Google Scholar

[28] Lefebvre AA, Lee JH, Balsara NP, Hammouda B. J. Polym. Sci., Polym. Phys. Ed. 2000, 38, 1926–1930.Suche in Google Scholar

[29] Sanchez IC, Lacombe RH. Macromolecules 1978, 11, 1145–1156.10.1021/ma60066a017Suche in Google Scholar

[30] Hegde C, Isloor AM, Padaki M, Ismail AF, Lau WJ. Membr. Wat. Treat. 2012, 3, 25–34.Suche in Google Scholar

[31] Rahimpour A, Madaeni SS, Amirinejad M, Mansourpanah Y, Zereshki S. J. Membr. Sci. 2009, 330, 189–204.Suche in Google Scholar

Received: 2013-6-3
Accepted: 2013-8-12
Published Online: 2013-09-17
Published in Print: 2013-11-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0132/html?lang=de
Button zum nach oben scrollen