Startseite Effect of processing technology on the morphological, mechanical and electrical properties of conductive polymer composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of processing technology on the morphological, mechanical and electrical properties of conductive polymer composites

  • Anett Király und Ferenc Ronkay EMAIL logo
Veröffentlicht/Copyright: 12. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Conducting carbon/polypropylene (PP) and carbon/poly(butylene terephthalate) (PBT) composites containing crystalline natural graphite and carbon black (CB) were prepared by compression and injection molding. The effect of the processing technology on the electrical, mechanical, and morphological properties was investigated. Determination of the constant torque at the end of the mixing process and differential scanning calorimetric (DSC) measurements showed that graphite had better connectivity with the more polar matrix (PBT) than with the less polar one (PP). Scanning electron microscopy (SEM) studies showed that compression molding results in a homogeneous structure, while injection molding results in a skin-core structure with different orientations. Layered electrical conductivity studies showed that the electrical conductivity of the compression molded samples did not change along the thickness of the sample, while that of the injection molded samples changed throughout the material, which is due to the different structures developed with each type of processing.


Corresponding author: Ferenc Ronkay, Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3, Hungary, e-mail:

This work is related to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This project is supported by the New Széchenyi Plan (grant number: TÁMOP-4.2.1/B-09/1/KMR-2010-0002) and Mobility and Environment: Studies in the fields of motor vehicle industry, energetics and environment in the Middle- and West-Transdanubian Regions of Hungary (grant number: TAMOP-4.2.1/B-09/1/KONV-2010-0003). This project is supported by the European Union and co-financed by the European Regional Development Fund. The work reported in this paper has been developed in the framework of the project “Talent care and cultivation in the scientific workshops of BME” project (grant number: TÁMOP – 4.2.2.B-10/1--2010-0009).

References

[1] Planes E, Flandin L, Alberola N. Energy Procedia 2012, 20, 311–323.10.1016/j.egypro.2012.03.031Suche in Google Scholar

[2] Kim M, Lim JW, Kim KH, Lee DG. Compos. Struct. 2013, 96, 569–575.Suche in Google Scholar

[3] Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q, Fu Q. eXPRESS Polym. Lett. 2012, 6, 159–168.Suche in Google Scholar

[4] Szentes A, Varga Cs, Horvath G, Bartha L, Konya Z, Haspel H, Szel J, Kukovecz A. eXPRESS Polym. Lett. 2012, 6, 494–502.Suche in Google Scholar

[5] Bouatia S, Mighri F, Bousmina M. Fuel Cells 2008, 8, 120–128.10.1002/fuce.200700060Suche in Google Scholar

[6] Yakisir D, Mighri F, Bousmina M. Macromol. Rapid Comm. 2006, 27, 1596–1602.Suche in Google Scholar

[7] Müller A, Kauranen P, von Ganski A, Hell B. J. Power Sources 2006, 154, 467–471.10.1016/j.jpowsour.2005.10.096Suche in Google Scholar

[8] Antunes RA, de Oliveira MCL, Ett G, Ett V. J. Power Sources 2011, 196, 2945–2961.10.1016/j.jpowsour.2010.12.041Suche in Google Scholar

[9] Wakabayashi K, Pierre C, Diking DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM. Macromolecules 2008, 41, 1905–1908.10.1021/ma071687bSuche in Google Scholar

[10] Huang J, Baird DG, McGrath JE. J. Power Sources 2005, 150, 110–119.10.1016/j.jpowsour.2005.02.074Suche in Google Scholar

[11] Tucker KW, Weeks GP. 1997, US Patent 5614312.Suche in Google Scholar

[12] Derieth T, Bandlamudi G, Beckhaus P, Kreuz C, Mahlendorf F, Heinzel A. J. New Mater. Electrochem. Syst. 2008, 11, 21–29.Suche in Google Scholar

[13] Mighri F, Huneault MA, Champagne MF. Polym. Eng. Sci. 2004, 44, 1755–1765.Suche in Google Scholar

[14] Du F, Fischer J, Winey K. Phys. Rev. B 2005, 72, 1–4.10.1103/PhysRevB.72.121404Suche in Google Scholar

[15] Behnam A, Guo J, Ural A. J. App. Phys. 2007, 102, 044313.Suche in Google Scholar

[16] Tiusanen J, Vlasveld D, Vourinen J. Compos. Sci. Technol. 2012, 72, 1741–1752.Suche in Google Scholar

[17] Bauhofer W, Kovacs JZ. Compos. Sci. Technol. 2009, 69, 1486–1498.Suche in Google Scholar

[18] Eken AE, Tozzi EJ, Klingenberg DJ, Bauhofer W. Polymer 2011, 52, 5178–5185.10.1016/j.polymer.2011.08.041Suche in Google Scholar

[19] Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I. Polymer 2010, 51, 201–210.10.1016/j.polymer.2009.11.047Suche in Google Scholar

[20] Alig I, Lellinger D, Engel M, Skipa T, Pötschke P. Polymer 2008, 49, 1902–1909.10.1016/j.polymer.2008.01.073Suche in Google Scholar

[21] Kovacs JZ, Velagala BS, Schulte K, Bauhofer W. Compos. Sci. Technol. 2007, 67, 922–928.Suche in Google Scholar

[22] Zhang BF, Jiang AY, Liu DB, Wu HH, Zou JC. Adv. Mat. Res. 2012, 472–475, 1059–1062.Suche in Google Scholar

[23] Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yong CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF, Hsiao YH. J. Power Sources 2008, 185, 1225–1232.10.1016/j.jpowsour.2008.06.097Suche in Google Scholar

[24] Karger-Kocsis J. Polypropylene: Structure, Blends and Composites, 1st ed., Chapman & Hall: Cambridge, 1995.Suche in Google Scholar

[25] Karger-Kocsis J. Polypropylene: An A-Z Reference, 1st ed., Kluwer Academic Publishers: London, 1999.10.1007/978-94-011-4421-6Suche in Google Scholar

[26] Wu HH, Feng LF, Jiang AY, Zhang BF. Polym. J. 2011, 43, 930–936.Suche in Google Scholar

[27] Li J, Zhou C, Gang W. Polym. Test. 2003, 22, 217–223.Suche in Google Scholar

[28] Wu Z, Zhou C, Zhu N. Polym. Test. 2001, 21, 479–483.Suche in Google Scholar

[29] He F, Fan J, Lau S. Polym. Test. 2008, 27, 964–970.Suche in Google Scholar

[30] Causin V, Marega C, Marigo A, Ferrara G, Ferraro A. Eur. Polym. J. 2006, 42, 3153–3161.Suche in Google Scholar

[31] Ferreira CI, Dal Castel C, Ovideo MAS, Mauler RS. Thermochim. Acta 2013, 533, 40–48.10.1016/j.tca.2012.11.025Suche in Google Scholar

[32] Király A, Ronkay F. Polym. Composite. 2013, 34, 1195–1203.Suche in Google Scholar

[33] Brandup, J, Immergut, EH. Polymer Handbook 3, 1st ed., Wiley: New York, 1988.Suche in Google Scholar

[34] Jeh JT, Runt JP. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 1543–1550.Suche in Google Scholar

[35] Nichols ME, Robertson RE. J. Polym. Sci., Part B: Polym. Phys. 1992, 30, 755–768.Suche in Google Scholar

[36] Krupa I, Novák I, Chodák I. Synth. Met. 2004, 145, 245–252.Suche in Google Scholar

[37] Wu H, Lu C, Zhang W, Zhang X. Mater. Design 2013, 52, 621–.10.1016/j.matdes.2013.05.056Suche in Google Scholar

[38] Király A, Ronkay F. Polym. Polym. Compos. 2013, 21, 93–100.Suche in Google Scholar

Received: 2013-2-23
Accepted: 2013-8-15
Published Online: 2013-09-12
Published in Print: 2013-11-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0038/html
Button zum nach oben scrollen