Startseite Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends

  • Mazatusziha Ahmad , Mat Uzir Wahit EMAIL logo , Mohammed Rafiq Abdul Kadir , Khairul Zaman Mohd Dahlan und Mohammad Jawaid
Veröffentlicht/Copyright: 17. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Blends of ultrahigh molecular weight polyethylene (UHMWPE) with high-density polyethylene (HDPE) provide adequate mechanical properties for biomedical application. In this study, the mechanical and thermal properties of UHMWPE/HDPE blends with the addition of polyethylene glycol (PEG) prepared via single-screw extruder nanomixer were investigated. The UHMWPE/HDPE blends exhibit a gradual increase in strength, modulus, and impact strength over pure polymers, suggesting synergism in the polymer blends. The elastic and flexural modulus was increased at the expense of tensile, flexural, and impact strength for the blends containing PEG. The degradation temperature of UHMWPE was improved with the incorporation of HDPE due to good thermal stability of HDPE. HDPE improved the dispersibility of PEG in matrix, consequently reduced the surface area available for the kinetic effects, and reduced the degradation temperature. The morphology analysis confirmed the miscibility between UHMWPE and HDPE and the changes in polymer structure with the presence of PEG modify the thermal behavior of the blends. The mechanical properties of the blends that are underlying values for the design of implant material show the potential used as biomedical devices.


Corresponding author: Mat Uzir Wahit, Center for Composites, Universiti Teknologi Malaysia, Johor, 81310 Skudai, Malaysia, e-mail:

The authors would like to thank the Ministry of Science, Technology and Innovation, Malaysia, for the E-Science Fund Grant (Vot no. 79160) and Universiti Teknologi Malaysia.

References

[1] Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Biomaterials 1999, 20, 1659–1688.10.1016/S0142-9612(99)00053-8Suche in Google Scholar

[2] Okularczyk W. Arch. Civ. Mech. Eng. 2004, 1, 167–176.Suche in Google Scholar

[3] Fang L, Gao P, Leng Y. Biomaterials 2006, 27, 3701–3707.10.1016/j.biomaterials.2006.02.023Suche in Google Scholar

[4] Muratoglu O, Mark A, Vittetoe D, Harris W, Rubash HJ. Bone Jt. Surg. 2003, 85A, 7–13.Suche in Google Scholar

[5] Wu JJ, Buckley CP, O’Connor JJ. Biomaterials 2002, 23, 3773–3783.10.1016/S0142-9612(02)00117-5Suche in Google Scholar

[6] Buckley CP, Wu J, Haughie DW. Biomaterials 2006, 28, 3178–3186.10.1016/j.biomaterials.2006.01.030Suche in Google Scholar

[7] Jacob O, Kazanci M, Cohn D, Marom G. Wear 2002, 253, 618–625.10.1016/S0043-1648(02)00110-2Suche in Google Scholar

[8] Ruan SL, Gao P, Yang XG, Yu TX. Polymer 2003, 44, 5643–5654.10.1016/S0032-3861(03)00628-1Suche in Google Scholar

[9] Kennedy MA, Peacock AJ, Mandelkern L. Macromolecules 1994, 27, 5297–5310.10.1021/ma00097a009Suche in Google Scholar

[10] Gul RM, McGarry F. J. Polym. Eng. Sci. 2004, 44, 1848–1857.Suche in Google Scholar

[11] Fu J, Ghali BW, Lozynsky AJ, Ebru OO, Muratoglu K. Polymer 2010, 51, 2721–2731.10.1016/j.polymer.2010.04.003Suche in Google Scholar

[12] Xie M, Liu X, Li H. J. Appl. Polym. Sci. 2006, 100, 1282–1288.Suche in Google Scholar

[13] Boscoletto AB, Franco R, Scapin M, Tavan M. Eur. Polym. J. 1997, 33, 97–105.Suche in Google Scholar

[14] Li N, Xiao C, Zhang Z. J. Appl. Polym. Sci. 2010, 117, 720–728.Suche in Google Scholar

[15] Xue Y, Wu W, Jacobs O, Scha B. Polym. Test. 2006, 25, 221–229.Suche in Google Scholar

[16] Xie M, Li H. J. Appl. Polym. Sci. 2008, 18, 3148–3153.Suche in Google Scholar

[17] Liu G, Chen Y, Li H. J. Appl. Polym. Sci. 2004, 92, 3894–3900.Suche in Google Scholar

[18] Zhu Y, Chang L, Yu S. J. Therm. Anal. 1995, 45, 329–333.Suche in Google Scholar

[19] Simis KS, Pruitt LA, Bistolfi A, Bellare A. Biomaterials 2006, 27, 1688–1694.10.1016/j.biomaterials.2005.09.033Suche in Google Scholar PubMed

[20] Galeski A, Bartczak Z, Argon AS, Cohen RE. Macromolecules 1992, 25, 5705–5718.10.1021/ma00047a023Suche in Google Scholar

[21] Lee BJ, Argon AS, Parks DM, Ahzi S, Bartczak Z. Polymer 1993, 34, 3555–3575.10.1016/0032-3861(93)90039-DSuche in Google Scholar

[22] Bensason S, Nazarenko S, Chum S, Hiltner A, Baer E. Polymer 1997, 38, 3513–3520.10.1016/S0032-3861(96)00906-8Suche in Google Scholar

[23] Lim KLK, Mohd Ishak ZA, Ishiaku US, Fuad AMY, Yusof AH, Czigany T, Pukanszky B, Ogunniyi DS. J. Appl. Polym. Sci. 2005, 97, 413–425.Suche in Google Scholar

[24] Zuo JD, Zhu YM, Liu SM, Jiang ZJ, Zhao JQ. Polym. Bull. 2007, 58, 711–722.Suche in Google Scholar

[25] Tanem BS, Stori A. Polymer 2001, 42, 5389–5399.10.1016/S0032-3861(00)00872-7Suche in Google Scholar

[26] Kyu T, Vadhar P. J. Appl. Polym. Sci. 1986, 32, 5575–5584.Suche in Google Scholar

[27] Minkova L, Mihailov M. Colloid Polym. Sci. 1987, 265, 1–7.Suche in Google Scholar

[28] Vadhar P, Kyu T. Polym. Eng. Sci. 1987, 27, 202.Suche in Google Scholar

[29] Puig CC. Polymer 2001, 42, 6579–6585.10.1016/S0032-3861(01)00102-1Suche in Google Scholar

[30] Whitehouse C, Lu XH, Gao P, Chai CK. Polym. Eng. Sci. 1997, 37, 1944–1958.Suche in Google Scholar

[31] Nitta KH, Tanaka A. Polymer 2001, 42, 1219–1226.10.1016/S0032-3861(00)00418-3Suche in Google Scholar

[32] Stadler FJ, Kascht J, Munstedt H. Polymer 2005, 46, 10311–10320.10.1016/j.polymer.2005.07.099Suche in Google Scholar

[33] Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. Polym. Degrad. Stabil. 2000, 67, 535–540.Suche in Google Scholar

[34] Roy PK, Surekhal P, Rajagopal C, Choudhary V. Expr. Polym. Lett. 2007, 1, 208–216.Suche in Google Scholar

[35] Bockhorn H, Hornung A, Hornung UJ. Anal. Appl. Pyrol. 1999, 50, 77–5101.Suche in Google Scholar

[36] Klaric S, Vrandec N, Roje U. J. Appl. Polym. Sci. 2000, 78, 166–172.Suche in Google Scholar

[37] Nesterov AY, Lipatov YS, Ignatova TD, Lashuk AA. Polym. Sci. U.S.S.R. 1980, 22, 2922–2928.Suche in Google Scholar

[38] Huang YL, Brown N. Polymer 1992, 33, 2989–2997.10.1016/0032-3861(92)90086-CSuche in Google Scholar

[39] He T. Polymer 1986, 27, 253–255.10.1016/0032-3861(86)90335-6Suche in Google Scholar

[40] Mohanty S, Nando GB. Polymer 1996, 37, 5387.10.1016/S0032-3861(96)00391-6Suche in Google Scholar

[41] Peacock AJ. Handbook of Polyethylene, New York: Marcel Dekker, 2000, p. 69.10.1201/9781482295467Suche in Google Scholar

[42] Fu Q, Men Y, Strobl G. Polymer 2003, 44, 1927–1933.10.1016/S0032-3861(02)00940-0Suche in Google Scholar

[43] Nugay N, Tincer T. Eur. Polym. J. 1994, 30, 473–477.Suche in Google Scholar

[44] Gao P, Mackley MR. Polymer 1994, 35, 5210–5216.10.1016/0032-3861(94)90471-5Suche in Google Scholar

[45] Parasnis NC, Ramani K. J. Mater. Sci. Mater. Med. 1998, 9, 165–172.Suche in Google Scholar

[46] Suwanprateeb J. J. Appl. Polym. Sci. 1999, 75, 1503–1513.Suche in Google Scholar

[47] Faker M, Razavi Aghjeh MK, Ghaffari M, Seyyedi S. Eur. Polym. J. 2008, 44, 1834–1842.Suche in Google Scholar

[48] Kurtz SM. USA: The UHMWPE Handbook. Ultra-high Molecular Weight Polyethylene in Total Joint Replacement. Elsevier/Academic Press, 2004.10.1520/STP1445-EBSuche in Google Scholar

[49] Brough I, Haward RN, Healey G, Wood A. Polymer 2004, 45, 3115–3123.10.1016/j.polymer.2004.02.036Suche in Google Scholar

Received: 2012-11-5
Accepted: 2013-7-11
Published Online: 2013-08-17
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2012-0142/html?lang=de
Button zum nach oben scrollen