Abstract
Water-soluble flexible organic frameworks (FOFs) can be constructed from multi-topic cationic, anionic or neutral, hydrophilic components through the quantitative formation of dynamic hydrazone or disulfide bond. FOFs have been revealed to possess intrinsic porosity, hydrophobic interior, and controllable nano-sizes. They function well as homogeneous nano-sponges for including proteins, DNA, residual drugs, such as neuromuscular blocking agents and heparins, and endotoxin. Their nano-sizes endow the frameworks with good ability for intracellular delivery of the included proteins and DNA and for the design of self-delivering prodrugs, while efficient inclusion of residual drugs can be utilized to develop FOF antidotes for inactivating the residual drugs. This review summarizes the design, preparations, characterizations and biofunctions of this family of dynamic covalent polymers.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21921003
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Yue-Yang Liu, Zhi-Min Lv, Shang-Bo Yu and Jia Tian wrote the draft, prepared and adapted the figures. Zhan-Ting Li finalized the manuscript and provided the funding.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: National Natural Science Foundation of China (No. 21921003).
-
Data availability: Not applicable.
References
1. Liu, Q.; Xiong, J.; Lin, W.; Liu, J.; Wan, Y.; Guo, C. F.; Wang, Q.; Liu, Z. Mater. Horiz. 2025, 12, 2436. https://doi.org/10.1039/D4MH01618A.Suche in Google Scholar
2. Liao, X.; Wang, Z.; Tang, W.; Lin, J. Chin. J. Org. Chem. 2023, 43, 2699. https://doi.org/10.6023/cjoc202212026.Suche in Google Scholar
3. Song, W.; Zhang, Y.; Tran, C. H.; Choi, H. K.; Yu, D. G.; Kim, I. Prog. Polym. Sci. 2023, 142, 101691. https://doi.org/10.1016/j.progpolymsci.2023.101691.Suche in Google Scholar
4. Hao, Q.; Tao, Y.; Ding, X.; Yang, Y.; Feng, J.; Wang, R. L.; Chen, X. M.; Chen, G. L.; Li, X.; OuYang, H.; Hu, X.; Tian, J.; Han, B. H.; Zhu, G.; Wang, W.; Zhang, F.; Tan, B.; Li, Z. T.; Wang, D.; Wan, L. J. Sci. China Chem. 2023, 66, 620. https://doi.org/10.1007/s11426-022-1475-x.Suche in Google Scholar
5. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959. https://doi.org/10.1021/cr200440z.Suche in Google Scholar PubMed
6. Zhu, Y.; Xu, P.; Zhang, X.; Wu, D. Chem. Soc. Rev. 2022, 51, 1377. https://doi.org/10.1039/D1CS00871D.Suche in Google Scholar
7. Xu, D.; Guo, J.; Yan, F. Prog. Polym. Sci. 2018, 79, 121. https://doi.org/10.1016/j.progpolymsci.2017.11.005.Suche in Google Scholar
8. Taylor, D.; Dalgarno, S. J.; Xu, Z.; Vilela, F. Chem. Soc. Rev. 2020, 49, 3981. https://doi.org/10.1039/C9CS00315K.Suche in Google Scholar PubMed
9. Yu, S. B.; Lin, F.; Tian, J.; Yu, J.; Zhang, D. W.; Li, Z. T. Chem. Soc. Rev. 2022, 51, 434. https://doi.org/10.1039/D1CS00862E.Suche in Google Scholar PubMed
10. Diercks, C. S.; Yaghi, O. M. Science 2017, 355, eaal1585. https://doi.org/10.1126/science.aal1585.Suche in Google Scholar PubMed
11. Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548. https://doi.org/10.1039/C2CS35072F.Suche in Google Scholar
12. Ji, C.; Kang, C.; Patra Bidhan, C.; Zhao, D. CCS Chem. 2023, 6, 856. https://doi.org/10.31635/ccschem.023.202303415.Suche in Google Scholar
13. Arora, N.; Flores, C.; Senarathna Milinda, C.; Thompson Christina, M.; Smaldone Ronald, A. CCS Chem. 2023, 6, 57. https://doi.org/10.31635/ccschem.023.202303261.Suche in Google Scholar
14. Xu, Y.; Ren, G.; Zhang, D.; Sun, L.; Zhao, Y. Chin. J. Chem. 2023, 41, 3447. https://doi.org/10.1002/cjoc.202300244.Suche in Google Scholar
15. Lin, G.; Mal, A.; Wang, X.; Zhou, X.; Gui, B.; Wang, C. Sci. China Chem. 2023, 66, 2977. https://doi.org/10.1007/s11426-023-1694-2.Suche in Google Scholar
16. Liu, X. H.; Wang, P. L.; Wang, W.; Ding, S. Y. Sci. China Chem. 2024, 67, 3906. https://doi.org/10.1007/s11426-024-2213-2.Suche in Google Scholar
17. Zhang, Z.; Ye, Y.; Xiang, S.; Chen, B. Acc. Chem. Res. 2022, 55, 3752. https://doi.org/10.1021/acs.accounts.2c00686.Suche in Google Scholar PubMed
18. Zhu, R.; Yu, S.; Yang, X.; Zhu, R.; Liu, H.; Niu, K.; Xing, L. Chin. Chem. Lett. 2024, 35, 109539. https://doi.org/10.1016/j.cclet.2024.109539.Suche in Google Scholar
19. Zheng, Z.; Lin, Q.; Peng, S.; Zhang, Y.; Xu, S.; Zhang, H.; Wang, H. Sci. China Chem. 2025. https://doi.org/10.1007/s11426-024-2511-1.Suche in Google Scholar
20. Li, Z. T.; Yu, S.-B.; Liu, Y.; Tian, J.; Zhang, D. W. Acc. Chem. Res. 2022, 55, 2316. https://doi.org/10.1021/acs.accounts.2c00335.Suche in Google Scholar PubMed
21. Shen, M. N.; Lin, X. W.; Luo, J.; Li, W. Z.; Ye, Y. Y.; Wang, X. Q. Mol. Syst. Des. Eng. 2022, 7, 1570. https://doi.org/10.1039/D2ME00117A.Suche in Google Scholar
22. Pedrini, A.; Marchetti, D.; Pinalli, R.; Massera, C. ChemPlusChem 2023, 88, e202300383. https://doi.org/10.1002/cplu.202300383.Suche in Google Scholar PubMed
23. Zhang, P. Q.; Li, Q.; Wang, Z. K.; Tang, Q. X.; Liu, P. P.; Li, W. H.; Yang, G. Y.; Yang, B.; Ma, D.; Li, Z. T. Chin. Chem. Lett. 2023, 34, 107632. https://doi.org/10.1016/j.cclet.2022.06.055.Suche in Google Scholar
24. Tian, Z.; Zhao, J.; Gong, G.; Bai, X.; Li, H.; Wang, J.; Wang, L.; Cai, Q.; Chen, S. Sci. Sin. Chim. 2023, 53, 2367. https://doi.org/10.1360/SSC-2023-0176.Suche in Google Scholar
25. Wang, S.; Dong, H.; Gong, G.; Lin, S.; Zhao, J.; Tian, Z.; Lu, Y.; Bai, X.; Zhang, M.; Wang, L.; Zhang, K. D.; Chen, S. Mater. Chem. Front. 2024, 8, 4096. https://doi.org/10.1039/D4QM00735B.Suche in Google Scholar
26. Bai, X.; Tian, Z.; Dong, H.; Xia, N.; Zhao, J.; Sun, P.; Gong, G.; Wang, J.; Wang, L.; Li, H.; Chen, S. Angew. Chem., Int. Ed. 2024, 63, e202408428. https://doi.org/10.1002/anie.202408428.Suche in Google Scholar PubMed
27. Zhang, L.; Liu, Y. Y.; Zong, Y.; Lei, Z.; Yu, S. B.; Zhou, W.; Wang, H.; Zhang, D. W.; Li, Z. T. ACS Appl. Bio Mater. 2025, 8, 792. https://doi.org/10.1021/acsabm.4c01640.Suche in Google Scholar PubMed
28. Yu, S. B.; Zhou, W.; Tian, J.; Ma, D.; Zhang, D. W.; Li, Z. T. Sci. Sin. Chim. 2023, 53, 2345. https://doi.org/10.1360/SSC-2023-0134.Suche in Google Scholar
29. Tian, J.; Zhou, T. Y.; Zhang, S. C.; Aloni, S.; Altoe, M. V.; Xie, S. H.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. Nat. Commun. 2014, 5, 5574. https://doi.org/10.1038/ncomms6574.Suche in Google Scholar PubMed PubMed Central
30. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621. https://doi.org/10.1021/ar020254k.Suche in Google Scholar PubMed
31. Lin, J. L.; Wang, Z. K.; Xu, Z. Y.; Wei, L.; Zhang, Y. C.; Wang, H.; Zhang, D. W.; Zhou, W.; Zhang, Y. B.; Liu, Y.; Li, Z. T. J. Am. Chem. Soc. 2020, 142, 3577. https://doi.org/10.1021/jacs.9b13263.Suche in Google Scholar PubMed
32. Oh, H.; Kalidindi, S. B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R. A.; Hirscher, M. Angew. Chem., Int. Ed. 2013, 52, 13219. https://doi.org/10.1002/anie.201307443.Suche in Google Scholar PubMed
33. Li, Q.; Sun, J. D.; Yang, B.; Wang, H.; Zhang, D. W.; Ma, D.; Li, Z. T. Chin. Chem. Lett. 2022, 33, 1988. https://doi.org/10.1016/j.cclet.2021.10.017.Suche in Google Scholar
34. Sun, J. D.; Li, Q.; Haoyang, W. W.; Zhang, D. W.; Wang, H.; Zhou, W.; Ma, D.; Hou, J. L.; Li, Z. T. Mol. Pharm. 2022, 19, 953. https://doi.org/10.1021/acs.molpharmaceut.1c00923.Suche in Google Scholar PubMed
35. Zong, Y.; Xu, Y. Y.; Wu, Y.; Liu, Y.; Li, Q.; Lin, F.; Yu, S. B.; Wang, H.; Zhou, W.; Sun, X. W.; Zhang, D. W.; Li, Z. T. J. Mater. Chem. B 2022, 10, 3268. https://doi.org/10.1039/D2TB00174H.Suche in Google Scholar PubMed
36. Wu, Y.; Liu, Y. Y.; Liu, H. K.; Yu, S. B.; Lin, F.; Zhou, W.; Wang, H.; Zhang, D. W.; Li, Z. T.; Ma, D. Chem. Sci. 2022, 13, 9243. https://doi.org/10.1039/d2sc02456j.Suche in Google Scholar PubMed PubMed Central
37. Xu, Z. Y.; Liu, H. K.; Wu, Y.; Zhang, Y. C.; Zhou, W.; Wang, H.; Zhang, D. W.; Ma, D.; Li, Z. T. ACS Appl. Bio Mater. 2021, 4, 591. https://doi.org/10.1021/acsabm.1c00316.Suche in Google Scholar PubMed
38. Wang, Z. K.; Lin, J. L.; Zhang, Y. C.; Yang, C. W.; Zhao, Y. K.; Leng, Z. W.; Wang, H.; Zhang, D. W.; Zhu, J.; Li, Z. T. Mater. Chem. Front. 2021, 5, 869. https://doi.org/10.1039/D0QM00791A.Suche in Google Scholar
39. Liu, Y. Y.; Wu, Y.; Guo; Wang, H.; Zhou, W.; Zhang, D. W.; Li, Z. T. Chem. Synth. 2024, 4, 37. https://doi.org/10.20517/cs.2023.52.Suche in Google Scholar
40. Maeda, T.; Otsuka, H.; Takahara, A. Prog. Polym. Sci. 2009, 34, 581. https://doi.org/10.1016/j.progpolymsci.2009.03.001.Suche in Google Scholar
41. Han, G.; Yang, W.; Ling, H.; Liu, H.; Ren, S. Macromol. Chem. Phys. 2025, 2400461. https://doi.org/10.1002/macp.202400461.Suche in Google Scholar
42. Lei, Z.; Chen, H.; Huang, S.; Wayment, L. J.; Xu, Q.; Zhang, W. Chem. Rev. 2024, 124, 7829. https://doi.org/10.1021/acs.chemrev.3c00926.Suche in Google Scholar PubMed
43. Xiong, W.; Lu, H. Sci. China Chem. 2023, 66, 725. https://doi.org/10.1007/s11426-022-1418-9.Suche in Google Scholar
44. Apostolides, D. E.; Patrickios, C. S. Polym. Int. 2018, 67, 627. https://doi.org/10.1002/pi.5554.Suche in Google Scholar
45. Rao, J.; Khan, A. Polym. Chem. 2013, 4, 2691. https://doi.org/10.1039/C3PY00200D.Suche in Google Scholar
46. Kim, K.-S.; Cho, H. J.; Lee, J.; Ha, S.; Song, S. G.; Kim, S.; Yun, W. S.; Kim, S. K.; Huh, J.; Song, C. Macromolecules 2018, 51, 8278. https://doi.org/10.1021/acs.macromol.8b01909.Suche in Google Scholar
47. Weng, J. Y.; Yue, M.; Li, Q.; Yang, Y.; Wang, Y. R.; Chen, Y.; Li, S. L.; Lan, Y. Q. Coord. Chem. Rev. 2025, 535, 216614. https://doi.org/10.1016/j.ccr.2025.216614.Suche in Google Scholar
48. Verma, G.; Butikofer, S.; Kumar, S.; Ma, S. Top. Curr. Chem. 2020, 378, 4. https://doi.org/10.1007/s41061-019-0268-x.Suche in Google Scholar PubMed
49. Yang, B.; Zhang, X.-D.; Li, J.; Tian, J.; Wu, Y.-P.; Yu, F.-X.; Wang, R.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhou, L.; Li, Z.-T. CCS Chem. 2019, 1, 156. https://doi.org/10.31635/ccschem.019.20180011.Suche in Google Scholar
50. Li, X. F.; Yu, S. B.; Yang, B.; Tian, J.; Wang, H.; Zhang, D. W.; Liu, Y.; Li, Z. T. Sci. China Chem. 2018, 61, 830. https://doi.org/10.1007/s11426-018-9234-2.Suche in Google Scholar
51. Badjić, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723. https://doi.org/10.1021/ar040223k.Suche in Google Scholar PubMed
52. Chen, Y.; Lei, Y.; Tong, L.; Li, H. Chem. Eur. J. 2022, 28, e202102910. https://doi.org/10.1002/chem.202102910.Suche in Google Scholar PubMed
53. Finnegan, T. J.; Gunawardana, V. W. L.; Badjić, J. D. Chem. Eur. J. 2021, 27, 13280. https://doi.org/10.1002/chem.202101532.Suche in Google Scholar PubMed PubMed Central
54. Ma, D.; Zhang, J.; Liu, Y. Y.; Zhang, L.; Zhao, Z.; Lin, Q.; Lei, Y.; Xing, J.; Wang, H.; Tian, J.; Zhang, D. W.; Zhou, W.; Li, Z. T. Sci. China Chem. 2025. https://doi.org/10.1007/s11426-024-2519-8.Suche in Google Scholar
55. Zhang, F. X.; Kirschning, C. J.; Mancinelli, R.; Xu, X. P.; Jin, Y.; Faure, E.; Mantovani, A.; Rothe, M.; Muzio, M.; Arditi, M. J. Biol. Chem. 1999, 274, 7611. https://doi.org/10.1074/jbc.274.12.7611.Suche in Google Scholar PubMed
56. Nag, K.; Singh, D. R.; Shetti, A. N.; Kumar, H.; Sivashanmugam, T.; Parthasarathy, S. Anesth. Essays Res. 2013, 7, 302. https://doi.org/10.4103/0259-1162.123211.Suche in Google Scholar PubMed PubMed Central
57. Hunter, J. M.; Sneyd, J. R. Br. J. Anaesth. 2024, 132, 15. https://doi.org/10.1016/j.bja.2023.11.006.Suche in Google Scholar PubMed
58. Liu, H. K.; Lin, F.; Yu, S. B.; Wu, Y.; Lu, S.; Liu, Y. Y.; Qi, Q. Y.; Cao, J.; Zhou, W.; Li, X.; Wang, H.; Zhang, D. W.; Li, Z. T.; Ma, D. J. Med. Chem. 2022, 65, 16893. https://doi.org/10.1021/acs.jmedchem.2c01677.Suche in Google Scholar PubMed
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- IUPAC Technical Report
- A brief guide to polymer terminology (IUPAC Technical Report)
- Special Issue: International Conference on Physical Organic Chemistry; Guest Editors: Lei Jiao and Sanzhong Luo
- Review Articles
- Non-ruthenium catalysts based self-oscillating gels driven by the Belousov-Zhabotinsky reaction
- Topological innovation in molecular design: advances in Möbius architectures for functional materials
- Research Articles
- Fluorescent discrimination for snake venom via a dual-mode supramolecular sensor array
- Machine learning predictions for regioselectivity of hydroformylation reactions: leveraging limited data for high-precision results
- Virtual transition states
- Water-soluble flexible organic frameworks: synthesis, characterizations and functions
- Stepwise or concerted? One-bond-nucleophilicity and -electrophilicity parameters for the mechanistic analysis of 1,3-dipolar cycloadditions
- Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads
- Monte Carlo modeling of heteropolysaccharides using MD-informed disaccharide data: application to keratan sulfate
Artikel in diesem Heft
- Frontmatter
- IUPAC Technical Report
- A brief guide to polymer terminology (IUPAC Technical Report)
- Special Issue: International Conference on Physical Organic Chemistry; Guest Editors: Lei Jiao and Sanzhong Luo
- Review Articles
- Non-ruthenium catalysts based self-oscillating gels driven by the Belousov-Zhabotinsky reaction
- Topological innovation in molecular design: advances in Möbius architectures for functional materials
- Research Articles
- Fluorescent discrimination for snake venom via a dual-mode supramolecular sensor array
- Machine learning predictions for regioselectivity of hydroformylation reactions: leveraging limited data for high-precision results
- Virtual transition states
- Water-soluble flexible organic frameworks: synthesis, characterizations and functions
- Stepwise or concerted? One-bond-nucleophilicity and -electrophilicity parameters for the mechanistic analysis of 1,3-dipolar cycloadditions
- Radical-enhanced intersystem crossing, spin dipolar interaction and electron exchange in perylenebisimide-TEMPO dyads
- Monte Carlo modeling of heteropolysaccharides using MD-informed disaccharide data: application to keratan sulfate