Startseite Naturwissenschaften Water-soluble flexible organic frameworks: synthesis, characterizations and functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Water-soluble flexible organic frameworks: synthesis, characterizations and functions

  • Yue-Yang Liu , Zhi-Min Lv , Shang-Bo Yu ORCID logo , Jia Tian und Zhan-Ting Li ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. Juni 2025

Abstract

Water-soluble flexible organic frameworks (FOFs) can be constructed from multi-topic cationic, anionic or neutral, hydrophilic components through the quantitative formation of dynamic hydrazone or disulfide bond. FOFs have been revealed to possess intrinsic porosity, hydrophobic interior, and controllable nano-sizes. They function well as homogeneous nano-sponges for including proteins, DNA, residual drugs, such as neuromuscular blocking agents and heparins, and endotoxin. Their nano-sizes endow the frameworks with good ability for intracellular delivery of the included proteins and DNA and for the design of self-delivering prodrugs, while efficient inclusion of residual drugs can be utilized to develop FOF antidotes for inactivating the residual drugs. This review summarizes the design, preparations, characterizations and biofunctions of this family of dynamic covalent polymers.


Corresponding author: Zhan-Ting Li, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Physical Organic Chemistry held on 18–22 Aug 2024 in Beijing, China.

Award Identifier / Grant number: 21921003

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Yue-Yang Liu, Zhi-Min Lv, Shang-Bo Yu and Jia Tian wrote the draft, prepared and adapted the figures. Zhan-Ting Li finalized the manuscript and provided the funding.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: National Natural Science Foundation of China (No. 21921003).

  7. Data availability: Not applicable.

References

1. Liu, Q.; Xiong, J.; Lin, W.; Liu, J.; Wan, Y.; Guo, C. F.; Wang, Q.; Liu, Z. Mater. Horiz. 2025, 12, 2436. https://doi.org/10.1039/D4MH01618A.Suche in Google Scholar

2. Liao, X.; Wang, Z.; Tang, W.; Lin, J. Chin. J. Org. Chem. 2023, 43, 2699. https://doi.org/10.6023/cjoc202212026.Suche in Google Scholar

3. Song, W.; Zhang, Y.; Tran, C. H.; Choi, H. K.; Yu, D. G.; Kim, I. Prog. Polym. Sci. 2023, 142, 101691. https://doi.org/10.1016/j.progpolymsci.2023.101691.Suche in Google Scholar

4. Hao, Q.; Tao, Y.; Ding, X.; Yang, Y.; Feng, J.; Wang, R. L.; Chen, X. M.; Chen, G. L.; Li, X.; OuYang, H.; Hu, X.; Tian, J.; Han, B. H.; Zhu, G.; Wang, W.; Zhang, F.; Tan, B.; Li, Z. T.; Wang, D.; Wan, L. J. Sci. China Chem. 2023, 66, 620. https://doi.org/10.1007/s11426-022-1475-x.Suche in Google Scholar

5. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959. https://doi.org/10.1021/cr200440z.Suche in Google Scholar PubMed

6. Zhu, Y.; Xu, P.; Zhang, X.; Wu, D. Chem. Soc. Rev. 2022, 51, 1377. https://doi.org/10.1039/D1CS00871D.Suche in Google Scholar

7. Xu, D.; Guo, J.; Yan, F. Prog. Polym. Sci. 2018, 79, 121. https://doi.org/10.1016/j.progpolymsci.2017.11.005.Suche in Google Scholar

8. Taylor, D.; Dalgarno, S. J.; Xu, Z.; Vilela, F. Chem. Soc. Rev. 2020, 49, 3981. https://doi.org/10.1039/C9CS00315K.Suche in Google Scholar PubMed

9. Yu, S. B.; Lin, F.; Tian, J.; Yu, J.; Zhang, D. W.; Li, Z. T. Chem. Soc. Rev. 2022, 51, 434. https://doi.org/10.1039/D1CS00862E.Suche in Google Scholar PubMed

10. Diercks, C. S.; Yaghi, O. M. Science 2017, 355, eaal1585. https://doi.org/10.1126/science.aal1585.Suche in Google Scholar PubMed

11. Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548. https://doi.org/10.1039/C2CS35072F.Suche in Google Scholar

12. Ji, C.; Kang, C.; Patra Bidhan, C.; Zhao, D. CCS Chem. 2023, 6, 856. https://doi.org/10.31635/ccschem.023.202303415.Suche in Google Scholar

13. Arora, N.; Flores, C.; Senarathna Milinda, C.; Thompson Christina, M.; Smaldone Ronald, A. CCS Chem. 2023, 6, 57. https://doi.org/10.31635/ccschem.023.202303261.Suche in Google Scholar

14. Xu, Y.; Ren, G.; Zhang, D.; Sun, L.; Zhao, Y. Chin. J. Chem. 2023, 41, 3447. https://doi.org/10.1002/cjoc.202300244.Suche in Google Scholar

15. Lin, G.; Mal, A.; Wang, X.; Zhou, X.; Gui, B.; Wang, C. Sci. China Chem. 2023, 66, 2977. https://doi.org/10.1007/s11426-023-1694-2.Suche in Google Scholar

16. Liu, X. H.; Wang, P. L.; Wang, W.; Ding, S. Y. Sci. China Chem. 2024, 67, 3906. https://doi.org/10.1007/s11426-024-2213-2.Suche in Google Scholar

17. Zhang, Z.; Ye, Y.; Xiang, S.; Chen, B. Acc. Chem. Res. 2022, 55, 3752. https://doi.org/10.1021/acs.accounts.2c00686.Suche in Google Scholar PubMed

18. Zhu, R.; Yu, S.; Yang, X.; Zhu, R.; Liu, H.; Niu, K.; Xing, L. Chin. Chem. Lett. 2024, 35, 109539. https://doi.org/10.1016/j.cclet.2024.109539.Suche in Google Scholar

19. Zheng, Z.; Lin, Q.; Peng, S.; Zhang, Y.; Xu, S.; Zhang, H.; Wang, H. Sci. China Chem. 2025. https://doi.org/10.1007/s11426-024-2511-1.Suche in Google Scholar

20. Li, Z. T.; Yu, S.-B.; Liu, Y.; Tian, J.; Zhang, D. W. Acc. Chem. Res. 2022, 55, 2316. https://doi.org/10.1021/acs.accounts.2c00335.Suche in Google Scholar PubMed

21. Shen, M. N.; Lin, X. W.; Luo, J.; Li, W. Z.; Ye, Y. Y.; Wang, X. Q. Mol. Syst. Des. Eng. 2022, 7, 1570. https://doi.org/10.1039/D2ME00117A.Suche in Google Scholar

22. Pedrini, A.; Marchetti, D.; Pinalli, R.; Massera, C. ChemPlusChem 2023, 88, e202300383. https://doi.org/10.1002/cplu.202300383.Suche in Google Scholar PubMed

23. Zhang, P. Q.; Li, Q.; Wang, Z. K.; Tang, Q. X.; Liu, P. P.; Li, W. H.; Yang, G. Y.; Yang, B.; Ma, D.; Li, Z. T. Chin. Chem. Lett. 2023, 34, 107632. https://doi.org/10.1016/j.cclet.2022.06.055.Suche in Google Scholar

24. Tian, Z.; Zhao, J.; Gong, G.; Bai, X.; Li, H.; Wang, J.; Wang, L.; Cai, Q.; Chen, S. Sci. Sin. Chim. 2023, 53, 2367. https://doi.org/10.1360/SSC-2023-0176.Suche in Google Scholar

25. Wang, S.; Dong, H.; Gong, G.; Lin, S.; Zhao, J.; Tian, Z.; Lu, Y.; Bai, X.; Zhang, M.; Wang, L.; Zhang, K. D.; Chen, S. Mater. Chem. Front. 2024, 8, 4096. https://doi.org/10.1039/D4QM00735B.Suche in Google Scholar

26. Bai, X.; Tian, Z.; Dong, H.; Xia, N.; Zhao, J.; Sun, P.; Gong, G.; Wang, J.; Wang, L.; Li, H.; Chen, S. Angew. Chem., Int. Ed. 2024, 63, e202408428. https://doi.org/10.1002/anie.202408428.Suche in Google Scholar PubMed

27. Zhang, L.; Liu, Y. Y.; Zong, Y.; Lei, Z.; Yu, S. B.; Zhou, W.; Wang, H.; Zhang, D. W.; Li, Z. T. ACS Appl. Bio Mater. 2025, 8, 792. https://doi.org/10.1021/acsabm.4c01640.Suche in Google Scholar PubMed

28. Yu, S. B.; Zhou, W.; Tian, J.; Ma, D.; Zhang, D. W.; Li, Z. T. Sci. Sin. Chim. 2023, 53, 2345. https://doi.org/10.1360/SSC-2023-0134.Suche in Google Scholar

29. Tian, J.; Zhou, T. Y.; Zhang, S. C.; Aloni, S.; Altoe, M. V.; Xie, S. H.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. Nat. Commun. 2014, 5, 5574. https://doi.org/10.1038/ncomms6574.Suche in Google Scholar PubMed PubMed Central

30. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621. https://doi.org/10.1021/ar020254k.Suche in Google Scholar PubMed

31. Lin, J. L.; Wang, Z. K.; Xu, Z. Y.; Wei, L.; Zhang, Y. C.; Wang, H.; Zhang, D. W.; Zhou, W.; Zhang, Y. B.; Liu, Y.; Li, Z. T. J. Am. Chem. Soc. 2020, 142, 3577. https://doi.org/10.1021/jacs.9b13263.Suche in Google Scholar PubMed

32. Oh, H.; Kalidindi, S. B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R. A.; Hirscher, M. Angew. Chem., Int. Ed. 2013, 52, 13219. https://doi.org/10.1002/anie.201307443.Suche in Google Scholar PubMed

33. Li, Q.; Sun, J. D.; Yang, B.; Wang, H.; Zhang, D. W.; Ma, D.; Li, Z. T. Chin. Chem. Lett. 2022, 33, 1988. https://doi.org/10.1016/j.cclet.2021.10.017.Suche in Google Scholar

34. Sun, J. D.; Li, Q.; Haoyang, W. W.; Zhang, D. W.; Wang, H.; Zhou, W.; Ma, D.; Hou, J. L.; Li, Z. T. Mol. Pharm. 2022, 19, 953. https://doi.org/10.1021/acs.molpharmaceut.1c00923.Suche in Google Scholar PubMed

35. Zong, Y.; Xu, Y. Y.; Wu, Y.; Liu, Y.; Li, Q.; Lin, F.; Yu, S. B.; Wang, H.; Zhou, W.; Sun, X. W.; Zhang, D. W.; Li, Z. T. J. Mater. Chem. B 2022, 10, 3268. https://doi.org/10.1039/D2TB00174H.Suche in Google Scholar PubMed

36. Wu, Y.; Liu, Y. Y.; Liu, H. K.; Yu, S. B.; Lin, F.; Zhou, W.; Wang, H.; Zhang, D. W.; Li, Z. T.; Ma, D. Chem. Sci. 2022, 13, 9243. https://doi.org/10.1039/d2sc02456j.Suche in Google Scholar PubMed PubMed Central

37. Xu, Z. Y.; Liu, H. K.; Wu, Y.; Zhang, Y. C.; Zhou, W.; Wang, H.; Zhang, D. W.; Ma, D.; Li, Z. T. ACS Appl. Bio Mater. 2021, 4, 591. https://doi.org/10.1021/acsabm.1c00316.Suche in Google Scholar PubMed

38. Wang, Z. K.; Lin, J. L.; Zhang, Y. C.; Yang, C. W.; Zhao, Y. K.; Leng, Z. W.; Wang, H.; Zhang, D. W.; Zhu, J.; Li, Z. T. Mater. Chem. Front. 2021, 5, 869. https://doi.org/10.1039/D0QM00791A.Suche in Google Scholar

39. Liu, Y. Y.; Wu, Y.; Guo; Wang, H.; Zhou, W.; Zhang, D. W.; Li, Z. T. Chem. Synth. 2024, 4, 37. https://doi.org/10.20517/cs.2023.52.Suche in Google Scholar

40. Maeda, T.; Otsuka, H.; Takahara, A. Prog. Polym. Sci. 2009, 34, 581. https://doi.org/10.1016/j.progpolymsci.2009.03.001.Suche in Google Scholar

41. Han, G.; Yang, W.; Ling, H.; Liu, H.; Ren, S. Macromol. Chem. Phys. 2025, 2400461. https://doi.org/10.1002/macp.202400461.Suche in Google Scholar

42. Lei, Z.; Chen, H.; Huang, S.; Wayment, L. J.; Xu, Q.; Zhang, W. Chem. Rev. 2024, 124, 7829. https://doi.org/10.1021/acs.chemrev.3c00926.Suche in Google Scholar PubMed

43. Xiong, W.; Lu, H. Sci. China Chem. 2023, 66, 725. https://doi.org/10.1007/s11426-022-1418-9.Suche in Google Scholar

44. Apostolides, D. E.; Patrickios, C. S. Polym. Int. 2018, 67, 627. https://doi.org/10.1002/pi.5554.Suche in Google Scholar

45. Rao, J.; Khan, A. Polym. Chem. 2013, 4, 2691. https://doi.org/10.1039/C3PY00200D.Suche in Google Scholar

46. Kim, K.-S.; Cho, H. J.; Lee, J.; Ha, S.; Song, S. G.; Kim, S.; Yun, W. S.; Kim, S. K.; Huh, J.; Song, C. Macromolecules 2018, 51, 8278. https://doi.org/10.1021/acs.macromol.8b01909.Suche in Google Scholar

47. Weng, J. Y.; Yue, M.; Li, Q.; Yang, Y.; Wang, Y. R.; Chen, Y.; Li, S. L.; Lan, Y. Q. Coord. Chem. Rev. 2025, 535, 216614. https://doi.org/10.1016/j.ccr.2025.216614.Suche in Google Scholar

48. Verma, G.; Butikofer, S.; Kumar, S.; Ma, S. Top. Curr. Chem. 2020, 378, 4. https://doi.org/10.1007/s41061-019-0268-x.Suche in Google Scholar PubMed

49. Yang, B.; Zhang, X.-D.; Li, J.; Tian, J.; Wu, Y.-P.; Yu, F.-X.; Wang, R.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhou, L.; Li, Z.-T. CCS Chem. 2019, 1, 156. https://doi.org/10.31635/ccschem.019.20180011.Suche in Google Scholar

50. Li, X. F.; Yu, S. B.; Yang, B.; Tian, J.; Wang, H.; Zhang, D. W.; Liu, Y.; Li, Z. T. Sci. China Chem. 2018, 61, 830. https://doi.org/10.1007/s11426-018-9234-2.Suche in Google Scholar

51. Badjić, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723. https://doi.org/10.1021/ar040223k.Suche in Google Scholar PubMed

52. Chen, Y.; Lei, Y.; Tong, L.; Li, H. Chem. Eur. J. 2022, 28, e202102910. https://doi.org/10.1002/chem.202102910.Suche in Google Scholar PubMed

53. Finnegan, T. J.; Gunawardana, V. W. L.; Badjić, J. D. Chem. Eur. J. 2021, 27, 13280. https://doi.org/10.1002/chem.202101532.Suche in Google Scholar PubMed PubMed Central

54. Ma, D.; Zhang, J.; Liu, Y. Y.; Zhang, L.; Zhao, Z.; Lin, Q.; Lei, Y.; Xing, J.; Wang, H.; Tian, J.; Zhang, D. W.; Zhou, W.; Li, Z. T. Sci. China Chem. 2025. https://doi.org/10.1007/s11426-024-2519-8.Suche in Google Scholar

55. Zhang, F. X.; Kirschning, C. J.; Mancinelli, R.; Xu, X. P.; Jin, Y.; Faure, E.; Mantovani, A.; Rothe, M.; Muzio, M.; Arditi, M. J. Biol. Chem. 1999, 274, 7611. https://doi.org/10.1074/jbc.274.12.7611.Suche in Google Scholar PubMed

56. Nag, K.; Singh, D. R.; Shetti, A. N.; Kumar, H.; Sivashanmugam, T.; Parthasarathy, S. Anesth. Essays Res. 2013, 7, 302. https://doi.org/10.4103/0259-1162.123211.Suche in Google Scholar PubMed PubMed Central

57. Hunter, J. M.; Sneyd, J. R. Br. J. Anaesth. 2024, 132, 15. https://doi.org/10.1016/j.bja.2023.11.006.Suche in Google Scholar PubMed

58. Liu, H. K.; Lin, F.; Yu, S. B.; Wu, Y.; Lu, S.; Liu, Y. Y.; Qi, Q. Y.; Cao, J.; Zhou, W.; Li, X.; Wang, H.; Zhang, D. W.; Li, Z. T.; Ma, D. J. Med. Chem. 2022, 65, 16893. https://doi.org/10.1021/acs.jmedchem.2c01677.Suche in Google Scholar PubMed

Received: 2025-05-01
Accepted: 2025-05-22
Published Online: 2025-06-13
Published in Print: 2026-01-23

© 2025 IUPAC & De Gruyter

Heruntergeladen am 27.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0508/html?lang=de
Button zum nach oben scrollen