Home Fluorescent discrimination for snake venom via a dual-mode supramolecular sensor array
Article
Licensed
Unlicensed Requires Authentication

Fluorescent discrimination for snake venom via a dual-mode supramolecular sensor array

  • Han-Wen Tian , Jia-Hong Tian , Xin-Yue Hu EMAIL logo and Dong-Sheng Guo ORCID logo EMAIL logo
Published/Copyright: February 27, 2025

Abstract

Precise snake venom identification is the prerequisite for clinical treatment, production of antiserum, basic research, and other applications. Unfortunately, it is still a challenging task which mainly originates from their extraordinary complicated protein composition. Differential sensing strategy was applied benefiting from its advantage in discrimination of complex mixtures. Herein, A dual-mode supramolecular fluorescent sensor array based on the heteromultivalent sensing strategy was developed. The heteromultivalent macrocyclic coassemblies with strong and pan-selective binding to proteins were employed to construct sensor units. Fluorescence intensity and anisotropy signals were integrated, which were expected to show multidimensional information of proteins, such as surface groups, protein structures, and molecular weights. Finally, a supramolecular sensor array with the ability of facile, rapid and general species-specific identification and taxonomic classification for snake venom was constructed. The sensor array also demonstrated its advantage in semiquantitative analysis and multi-level identification, suggesting its great potential for practical use.


Corresponding authors: Xin-Yue Hu, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China, e-mail: ; and Dong-Sheng Guo, College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative In-novation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Physical Organic Chemistry held on 18–22 Aug 2024 in Beijing, China.

Award Identifier / Grant number: 22101142

Acknowledgments

Financial supported by NSFC (22101142) and the Fundamental Research Funds for the Central Universities, which are gratefully acknowledged. The authors also thank Prof. Bart Jan Ravoo at Westfälische Wilhelms-Universität Münster for supplying the amphiphilic cyclodextrin used in this work.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: H. Tian and J.Tian conducted the experimental procedures, analyzed the data, and wrote the initial draft. X. Hu and D. Guo were responsible for the topic design and article revision. All authors have accepted responsibility for the entire content of this manuscript and approved its submission. The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: Financial supported by NSFC (22101142) and the Fundamental Research Funds for the Central Universities.

  7. Data availability: Not applicable.

References

1. Oliveira, A. L.; Viegas, M. F.; da Silva, S. L.; Soares, A. M.; Ramos, M. J.; Fernandes, P. A. The Chemistry of Snake Venom and its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–69; https://doi.org/10.1038/s41570-022-00393-7.Search in Google Scholar PubMed PubMed Central

2. Stocklin, R.; Mebs, D.; Boulain, J. C.; Panchaud, P. A.; Virelizier, H.; Gillard-Factor, C. Methods Mol. Biol. 2000, 146, 317–35.Search in Google Scholar

3. Ferraz, C. R.; Arrahman, A.; Xie, C.; Casewell, N. R.; Lewis, R. J.; Kool, J.; Cardoso, F. C. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front. Ecol. Evol. 2019, 7, 218; https://doi.org/10.3389/fevo.2019.00218.Search in Google Scholar

4. Tu, A. T. Adv. Exp. Med. Biol. 1996, 391, 37–62.10.1007/978-1-4613-0361-9_3Search in Google Scholar PubMed

5. Knudsen, C.; Jurgensen, J. A.; Fons, S.; Haack, A. M.; Friis, R. U. W.; Dam, S. H.; Bush, S. P.; White, J.; Laustsen, A. H. Snakebite Envenoming Diagnosis and Diagnostics. Front. Immunol. 2021, 12, 661457; https://doi.org/10.3389/fimmu.2021.661457.Search in Google Scholar PubMed PubMed Central

6. Long, C.; Wu, F.; Lu, Q.; Xie, B.; Shen, C.; Li, J.; Deng, Y.; Liang, P.; Yu, Y.; Lai, R. A Strategy for Efficient Preparation of Genus-Specific Diagnostic Antibodies for Snakebites. Front. Immunol. 2021, 12, 775678; https://doi.org/10.3389/fimmu.2021.775678.Search in Google Scholar PubMed PubMed Central

7. Zheng, Z.; Geng, W.-C.; Gao, J.; Mu, Y.-J.; Guo, D.-S. Differential Calixarene Receptors Create Patterns that Discriminate Glycosaminoglycans. Org. Chem. Front. 2018, 5, 2685–91; https://doi.org/10.1039/c8qo00606g.Search in Google Scholar

8. Yuan, D.; Yan, H.; Liu, J.; Liu, J.; Li, C.; Wang, J. A Fast and Colorimetric Sensor Array for the Discrimination of Ribonucleotides in Human Urine Samples by Gold Nanorods. Chin. Chem. Lett. 2020, 31, 455–8; https://doi.org/10.1016/j.cclet.2019.07.067.Search in Google Scholar

9. Tian, J.-H.; Hu, X.-Y.; Hu, Z.-Y.; Tian, H.-W.; Li, J.-J.; Pan, Y.-C.; Li, H.-B.; Guo, D.-S. A Facile Way to Construct Sensor Array Library Via Supramolecular Chemistry for Discriminating Complex Systems. Nat. Commun. 2022, 13, 4293; https://doi.org/10.1038/s41467-022-31986-x.Search in Google Scholar PubMed PubMed Central

10. Chen, L.; Yao, X.; Liu, X.; Luo, Z.; Ye, C.; Huang, C.; Wang, C.; Cai, C.; Lyu, L.; Wu, X.; Bi, H. High Throughput In-Situ Temperature Sensor Array with High Sensitivity and Excellent Linearity for Wireless Body Temperature Monitoring. Small Struct. 2022, 3, 2200080; https://doi.org/10.1002/sstr.202200080.Search in Google Scholar

11. Hu, X.; Zhang, H.; Wang, Z.; Shiu, C. Y. A.; Gu, Z. Microneedle Array Patches Integrated with Nanoparticles for Therapy and Diagnosis. Small Struct. 2021, 2, 2000097; https://doi.org/10.1002/sstr.202000097.Search in Google Scholar

12. Chen, F.; Qin, M.; Liu, W.; Wang, F.; Ren, W.; Xu, H.; Li, F. Snake Venom Identification via Fluorescent Discrimination. Anal. Chem. 2021, 93, 14025–30; https://doi.org/10.1021/acs.analchem.1c02804.Search in Google Scholar PubMed

13. Pan, Y.-C.; Wang, H.; Xu, X.; Tian, H.-W.; Zhao, H.; Hu, X.-Y.; Zhao, Y.; Liu, Y.; Ding, G.; Meng, Q.; Ravoo, B. J.; Zhang, T.; Guo, D.-S. CCS Chem. 2020, 2, 2485–97.10.31635/ccschem.020.202000561Search in Google Scholar

14. Xu, Z.; Jia, S.; Wang, W.; Yuan, Z.; Ravoo, B. J.; Guo, D.-S. Heteromultivalent Peptide Recognition by Co-Assembly of Cyclodextrin and Calixarene Amphiphiles Enables Inhibition of Amyloid Fibrillation. Nat. Chem. 2019, 11, 86–93; https://doi.org/10.1038/s41557-018-0164-y.Search in Google Scholar PubMed

15. Hu, X.-Y.; Hu, Z.-Y.; Tian, J.-H.; Shi, L.; Ding, F.; Li, H.-B.; Guo, D.-S. A Heteromultivalent Host–Guest Sensor Array for Cell Recognition and Discrimination. Chem. Commun. 2022, 58, 13198–201; https://doi.org/10.1039/d2cc04963e.Search in Google Scholar PubMed

16. Tian, H.-W.; Chang, Y.-X.; Hu, X.-Y.; Shah, M. R.; Li, H.-B.; Guo, D.-S. Supramolecular Imaging of Spermine in Cancer Cells. Nanoscale 2021, 13, 15362–8; https://doi.org/10.1039/d1nr04328e.Search in Google Scholar PubMed

17. Gao, J.; Li, J.; Geng, W.-C.; Chen, F.-Y.; Duan, X.-C.; Zheng, Z.; Ding, D.; Guo, D.-S. Biomarker Displacement Activation: A General Host–Guest Strategy for Targeted Phototheranostics in Vivo. J. Am. Chem. Soc. 2018, 140, 4945–53; https://doi.org/10.1021/jacs.8b02331.Search in Google Scholar PubMed

18. Tasoulis, T.; Isbister, G. K. A Review and Database of Snake Venom Proteomes. Toxins 2017, 9, 290; https://doi.org/10.3390/toxins9090290.Search in Google Scholar PubMed PubMed Central

19. Hayashi, K.; Takechi, M.; Sasaki, T.; Lee, C. Y. Amino Acid Sequence of Cardiotoxin-Analogue I from the Venom of Naja Naja Atra. Biochem. Biophys. Res. Commun. 1975, 64, 360–6; https://doi.org/10.1016/0006-291x(75)90262-4.Search in Google Scholar PubMed

20. Yang, C. C.; King, K.; Sun, T. P. Chemical Modification of Lysine and Histidine Residues in Phospholipase A2 from the Venom of Naja Naja Atra (Taiwan cobra). Toxicon 1981, 19, 645–59; https://doi.org/10.1016/0041-0101(81)90102-1.Search in Google Scholar PubMed

21. Roly, Z. Y.; Islam, M. M.; Reza, M. A. A Comparative In Silico Characterization of Functional and Physicochemical Properties of 3FTx (Three Finger Toxin) Proteins from Four Venomous Snakes. Bioinformation 2014, 10, 281–7; https://doi.org/10.6026/97320630010281.Search in Google Scholar PubMed PubMed Central

22. Garcia-Fernandez, R.; Peigneur, S.; Pons, T.; Alvarez, C.; Gonzalez, L.; Chavez, M. A.; Tytgat, J. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels. Toxins 2016, 8, 110; https://doi.org/10.3390/toxins8040110.Search in Google Scholar PubMed PubMed Central

23. Naghibi, S.; Chen, T.; Jamshidi Ghahfarokhi, A.; Tang, Y. AIEgen‐Enhanced Protein Imaging: Probe Design and Sensing Mechanisms. Aggregate 2021, 2, e41; https://doi.org/10.1002/agt2.41.Search in Google Scholar

24. Song, B.-L.; Zhang, X.-H.; Qiao, Z.-Y.; Wang, H. Peptide-Based AIEgens: From Molecular Design, Stimuli Responsiveness to Biomedical Application. CCS Chem. 2022, 4, 437–55; https://doi.org/10.31635/ccschem.021.202101231.Search in Google Scholar

25. Balachandran, Y. L.; Jiang, X. Aggregation-Induced Fluorogens in Bio-Detection, Tumor Imaging, and Therapy: A Review. CCS Chem. 2022, 4, 420–36; https://doi.org/10.31635/ccschem.021.202101307.Search in Google Scholar

26. Borges, R. J.; Cardoso, F. F.; Fernandes, C. A. H.; Dreyer, T. R.; de Moraes, D. S.; Floriano, R. S.; Rodrigues-Simioni, L.; Fontes, M. R. M. Functional and Structural Studies of a Phospholipase A2-like Protein Complexed to Zinc Ions: Insights on its Myotoxicity and Inhibition Mechanism. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3199–209; https://doi.org/10.1016/j.bbagen.2016.08.003.Search in Google Scholar PubMed

27. Konshina, A. G.; Krylov, N. A.; Efremov, R. G. Cardiotoxins: Functional Role of Local Conformational Changes. J. Chem. Inf. Model. 2017, 57, 2799–810; https://doi.org/10.1021/acs.jcim.7b00395.Search in Google Scholar PubMed

28. Tian, H.-W.; Xu, Z.; Li, H.-B.; Hu, X.-Y.; Guo, D.-S. Study on Assembling Compactness of Amphiphilic Calixarenes by Fluorescence Anisotropy. Supramol. Chem. 2022, 33, 527–33; https://doi.org/10.1080/10610278.2022.2087523.Search in Google Scholar

29. Chen, J.; Liu, J.; Chen, X.; Qiu, H. Recent Progress in Nanomaterial-Enhanced Fluorescence Polarization/Anisotropy Sensors. Chin. Chem. Lett. 2019, 30, 1575–80; https://doi.org/10.1016/j.cclet.2019.06.005.Search in Google Scholar

30. Popelka, S. R.; Miller, D. M.; Holen, J. T.; Kelso, D. M. Fluorescence Polarization Immunoassay. II. Analyzer for Rapid, Precise Measurement of Fluorescence Polarization with Use of Disposable Cuvettes. Clin. Chem. 1981, 27, 1198–201; https://doi.org/10.1093/clinchem/27.7.1198.Search in Google Scholar

31. Georgieva, D.; Arni, R. K.; Betzel, C. Proteome Analysis of Snake Venom Toxins: Pharmacological Insights. Expert Rev. Proteomics 2008, 5, 787–97; https://doi.org/10.1586/14789450.5.6.787.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0320).


Published Online: 2025-02-27

© 2025 IUPAC & De Gruyter

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0320/html
Scroll to top button