Stepwise or concerted? One-bond-nucleophilicity and -electrophilicity parameters for the mechanistic analysis of 1,3-dipolar cycloadditions
Abstract
Diazoalkanes are ambiphilic molecules that may react with electrophiles at carbon to give diazonium ions, with nucleophiles at nitrogen to yield azo compounds, or with dipolarophiles to produce pyrazolines. By studying the kinetics of the reactions of methyl diazoacetate and dimethyl diazomalonate with benzhydrylium ions (Ar2CH+) of known electrophilicity E, we determined their one-bond nucleophilicity parameters N and s N using the equation lg k 2(20 °C) = s N(N + E) (eq. (1)). Similarly, the electrophilicity parameters E of these diazoesters were obtained by measuring the rate constants of their reactions with one-bond nucleophiles of known N and s N. These reactivity parameters enable the calculation of rate constants for 1,3-dipolar cycloadditions with dipolarophiles, which proceed stepwise with rate-determining formation of zwitterionic intermediates. Concerted cycloadditions proceed faster than calculated by eq. (1), and the difference between the observed rate constants (ΔG ‡ exptl) and those calculated by eq. (1) (ΔG ‡ eq. 1) gives the energy of concert (ΔG ‡ concert = ΔG ‡ eq. 1 − ΔG ‡ exptl). Contrary to earlier reports, cycloadditions of methyl diazoacetate and dimethyl diazomalonate with enamines proceed stepwise through initial azo couplings. This involves enamine attack at the π*(N=N) orbital of the diazoalkane, oriented perpendicularly to the commonly considered 3-center 4-electron π-system. Since this orbital was previously ignored, the common FMO analysis of the reactions of 1,3-dipoles of the propargyl anion type requires revision. A new ordering system for 1,3-dipolar cycloadditions is proposed.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SFB749, project B1
Acknowledgments
We gratefully acknowledge the generous support of the Deutsche Forschungsgemeinschaft (SFB 749, project B1) and the Department of Chemistry, LMU München. Special thanks to Professor H.-U. Reissig, FU Berlin for valuable discussions and to Dr. David S. Stephenson for assistance with the NMR measurements.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Deutsche Forschungsgemeinschaft (SFB 749, project B1).
-
Data availability: Not applicable.
References
1. Mayr, H.; Patz, M. Scales of Nucleophilicity and Electrophilicity: A System for Ordering Polar Organic and Organometallic Reactions. Angew. Chem., Int. Ed. 1994, 33, 938. https://doi.org/10.1002/anie.199409381.Suche in Google Scholar
2. Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. Reference Scales for the Characterization of Cationic Electrophiles and Neutral Nucleophiles,. J. Am. Chem. Soc. 2001, 123, 9500. https://doi.org/10.1021/ja010890y.Suche in Google Scholar PubMed
3. Mayr, H.; Kempf, B.; Ofial, A. R. π-Nucleophilicity in Carbon−Carbon Bond-Forming Reactions. Acc. Chem. Res. 2003, 36, 66. https://doi.org/10.1021/ar020094c.Suche in Google Scholar PubMed
4. Mayr, H.; Ofial, A. R. Kinetics of Electrophile-Nucleophile Combinations: A General Approach to Polar Organic Reactivity. Pure Appl. Chem. 2005, 77, 1807. https://doi.org/10.1351/pac200577111807.Suche in Google Scholar
5. Mayr, H. Reactivity Scales for Quantifying Polar Organic Reactivity: The Benzhydrylium Methodology. Tetrahedron 2015, 71, 5095. https://doi.org/10.1016/j.tet.2015.05.055.Suche in Google Scholar
6. A Database of Reactivity Parameters E, and sN is Freely Accessible at. http://www.cup.lmu.de/oc/mayr/DBintro.html (accessed 24/02/2025).Suche in Google Scholar
7. Phan, T. B.; Breugst, M.; Mayr, H. Angew. Chem., Int. Ed. 2006, 45, 3869. https://doi.org/10.1002/anie.200600542.Suche in Google Scholar PubMed
8. Jüstel, P. M.; Pignot, C. D.; Ofial, A. R. Nucleophilic Reactivities of Thiophenolates. J. Org. Chem. 2021, 86, 5965. https://doi.org/10.1021/acs.joc.1c00025.Suche in Google Scholar PubMed
9. Jüstel, P. M.; Stan, A.; Pignot, C. D.; Ofial, A. R. Inherent Reactivity of Spiro-Activated Electrophilic Cyclopropanes. Chem. Eur. J. 2021, 27, 15928. https://doi.org/10.1002/chem.202103027.Suche in Google Scholar PubMed PubMed Central
10. Eitzinger, A.; Ofial, A. R. Reactivity of Electrophilic Cyclopropanes. Pure Appl. Chem. 2023, 95, 389. https://doi.org/10.1515/pac-2023-0209.Suche in Google Scholar PubMed PubMed Central
11. Ofial, A. R. Benzhydrylium and Tritylium Ions: Complementary Probes for Examining Ambident Nucleophiles. Pure Appl. Chem. 2015, 87, 341. https://doi.org/10.1515/pac-2014-1116.Suche in Google Scholar
12. Horn, M.; Mayr, H. A Comprehensive View on Stabilities and Reactivities of Triarylmethyl Cations (Tritylium Ions). J. Phys. Org. Chem. 2012, 25, 979. https://doi.org/10.1002/poc.2979.Suche in Google Scholar
13. Li, L.; Mayer, R. J.; Ofial, A. R.; Mayr, H. One-Bond-Nucleophilicity and -Electrophilicity Parameters: An Efficient Ordering System for 1,3-Dipolar Cycloadditions. J. Am. Chem. Soc. 2023, 145, 7416. https://doi.org/10.1021/jacs.2c13872.Suche in Google Scholar PubMed
14. Mayer, R. J.; Hampel, N.; Mayer, P.; Ofial, A. R.; Mayr, H. Eur. J. Org Chem. 2019, 2019, 412. https://doi.org/10.1002/ejoc.201800835.Suche in Google Scholar
15. Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. Eur. J. 2003, 9, 4068. https://doi.org/10.1002/chem.200304913.Suche in Google Scholar PubMed
16. Li, L.; Hsu, J.-R.; Zhao, H.; Ofial, A. R. Nucleophilicities of Cyclic α‐Diazo Carbonyl Compounds. Eur. J. Org Chem. 2023, 26, e202300005. https://doi.org/10.1002/ejoc.202300005.Suche in Google Scholar
17. Huisgen, R.; Bihlmaier, W.; Reissig, H.-U. Azo Coupling of α‐Diazo Carbonyl Compounds with N‐(1‐Cyclopentenyl)amines. Angew. Chem., Int. Ed. 1979, 18, 331. https://doi.org/10.1002/anie.197903311.Suche in Google Scholar
18. Li, L.; Mayer, R. J.; Stephenson, D. S.; Mayer, P.; Ofial, A. R.; Mayr, H. Quantification of the Electrophilicities of Diazoalkanes: Kinetics and Mechanism of Azo Couplings with Enamines and Sulfonium Ylides. Chem. Eur. J. 2022, 28, e202201376. https://doi.org/10.1002/chem.202201376.Suche in Google Scholar PubMed PubMed Central
19. Huisgen, R.; Reissig, H.-U. Cycloadditions of α‐Diazo Carbonyl Compounds to Enamines. Angew. Chem., Int. Ed. 1979, 18, 330. https://doi.org/10.1002/anie.197903301.Suche in Google Scholar
20. Kempf, B.; Hampel, N.; Ofial, A. R.; Mayr, H. Structure–Nucleophilicity Relationships for Enamines. Chem. Eur. J. 2003, 9, 2209. https://doi.org/10.1002/chem.200204666.Suche in Google Scholar PubMed
21. Appel, R.; Hartmann, N.; Mayr, H. Scope and Limitations of Cyclopropanations with Sulfur Ylides. J. Am. Chem. Soc. 2010, 132, 17894. https://doi.org/10.1021/ja1084749.Suche in Google Scholar PubMed
22. Mayr, H.; Hartnagel, M.; Grimm, K. Liebigs Ann./Recueil 1997, 1997, 55. https://doi.org/10.1002/jlac.199719970111.Suche in Google Scholar
23. Huisgen, R. 1,3‐Dipolar Cycloadditions. Past and Future. Angew. Chem., Int. Ed. 1963, 2, 565. https://doi.org/10.1002/anie.196305651.Suche in Google Scholar
24. Sustmann, R. A Simple Model for Substituent Effects in Cycloaddition Reactions. I. 1,3-Dipolar Cycloadditions. Tetrahedron Lett. 1971, 12, 2717. https://doi.org/10.1016/S0040-4039(01)96961-8.Suche in Google Scholar
25. Sustmann, R. Orbital Energy Control of Cycloaddition Reactivity. Pure Appl. Chem. 1974, 40, 569. https://doi.org/10.1351/pac197440040569.Suche in Google Scholar
26. Houk, K. N.; Sims, J.; Duke, R. E.Jr.; Strozier, R. W.; George, J. K. Frontier Molecular Orbitals of 1,3 Dipoles and Dipolarophiles. J. Am. Chem. Soc. 1973, 95, 7287. https://doi.org/10.1021/ja00803a017.Suche in Google Scholar
27. Houk, K. N.; Yamaguchi, K. Theory of 1,3-Dipolar Cycloadditions. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, Vol. 2, 1984; pp 407–450.Suche in Google Scholar
28. Sustmann, R.; Trill, H. Substituent Effects in 1,3‐Dipolar Cycloadditions of Phenyl Azide. Angew. Chem., Int. Ed. 1972, 11, 838. https://doi.org/10.1002/anie.197208382.Suche in Google Scholar
29. Bihlmaier, W.; Huisgen, R.; Reissig, H. U.; Voss, S. Reactivity Sequences of Dipolarophiles towards Diazocarbonyl Compounds – MO Perturbation Treatment. Tetrahedron Lett. 1979, 20, 2621. https://doi.org/10.1016/S0040-4039(01)86367-X.Suche in Google Scholar
30. Huisgen, R. 1,3-Dipolar Cycloadditions – Introduction, Survey, Mechanism. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, Vol. 1, 1984; pp 1–176.10.1002/chin.198518341Suche in Google Scholar
31. Fleming, I. Molecular Orbitals and Organic Chemical Reactions; Wiley: Chichester, UK, 2010; pp. 327–328.10.1002/9780470689493Suche in Google Scholar
32. Brückner, R. Reaktionsmechanismen, 3. Aufl.; Spektrum, Springer-Verlag: Berlin, 2007; p 670.Suche in Google Scholar
33. Chen, P.-P.; Ma, P.; He, X.; Svatunek, D.; Liu, F.; Houk, K. N. Computational Exploration of Ambiphilic Reactivity of Azides and Sustmann’s Paradigmatic Parabola. J. Org. Chem. 2021, 86, 5792. https://doi.org/10.1021/acs.joc.1c00239.Suche in Google Scholar PubMed PubMed Central
34. Li, L.; Mayer, P.; Stephenson, D. S.; Ofial, A. R.; Mayer, R. J.; Mayr, H. An Overlooked Pathway in 1,3‐Dipolar Cycloadditions of Diazoalkanes with Enamines. Angew. Chem., Int. Ed. 2022, 61, e202117047. https://doi.org/10.1002/anie.202117047.Suche in Google Scholar PubMed PubMed Central
35. Zhang, J.; Chen, Q.; Mayer, R. J.; Yang, J.-D.; Ofial, A. R.; Cheng, J.-P.; Mayr, H. Predicting Absolute Rate Constants for Huisgen Reactions of Unsaturated Iminium Ions with Diazoalkanes. Angew. Chem., Int. Ed. 2020, 59, 12527. https://doi.org/10.1002/anie.202003029.Suche in Google Scholar PubMed PubMed Central
36. Parr, R. G.; Szentpály, L. V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x.Suche in Google Scholar
© 2025 IUPAC & De Gruyter