Enhanced biofilm disruption in ESKAPE pathogens through synergistic activity of EPS degrading enzymes
-
Pooja Rao
, SubbaRao V. Madhunapantula
Abstract
Biofilm formation by Klebsiella pneumoniae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA) significantly contributes to antimicrobial resistance (AMR), complicating infections associated with medical devices. This study investigates the potential of α-Amylase, DNase I, and Proteinase K in disrupting extracellular polymeric substances (EPS) within biofilms to enhance biofilm inhibition. Molecular docking studies revealed a strong interaction between α-Amylase and cellulose (−3.58 kcal/mol), suggesting effective targeting of biofilm polysaccharides. Biofilm inhibition was quantified using the crystal violet microtiter plate assay, and structural changes were visualized through confocal laser scanning microscopy (CLSM). The checkerboard synergy assay showed that enzyme combinations achieved up to 90 % biofilm inhibition, significantly outperforming individual enzymes (50–70 %). Notably, α-Amylase + DNase I and α-Amylase + Proteinase K exhibited synergy (FICI ≤ 0.5) in MRSA and A. baumannii, while DNase I + Proteinase K showed limited activity in A. baumannii (FICI = 2.0), suggesting biofilm composition differences influence enzymatic activity. Confocal microscopy analysis revealed that biofilm thickness was reduced by 50 % in K. pneumoniae and by 60 % in A. baumannii, further supporting enzyme-mediated biofilm disruption. These findings highlight the potential clinical applications of enzymatic therapy, particularly in preventing ventilator-associated pneumonia (VAP) by inhibiting biofilm formation and disrupting preformed biofilms in endotracheal tubes and improving antimicrobial efficacy. This study establishes α-Amylase as a potent biofilm-disrupting agent, with synergistic enzyme therapy offering a viable strategy to combat biofilm-associated infections. Currently, we are focusing on optimizing enzyme formulations for clinical application and evaluating their combination with antibiotics to enhance therapeutic outcomes.
Funding source: UGC-BSR Research Start-Up Grant
Award Identifier / Grant number: No.F.30-601/2021 (BSR) dated 15th March 2023
Acknowledgments
We extend our sincere thanks to the Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) laboratory for their assistance with the confocal microscopy studies (Leica Stellaris-5 Confocal Laser Scanning Microscope- Funded by DST PURSE project-SR/PURSE/2021/81-(C) Year: 2022). We are grateful to Special Interest group - Biofilms in Clinical Settings and their Control, JSS AHER and UGC-BSR Research Start-up Grant for funding this study
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: “Special Interest group- Biofilms in Clinical Settings and their Control. No: REG/FLS/GEN/2020-21/155 dated 14/07/2020” and “UGC-BSR Research Start-up Grant (No.F.30-601/2021 (BSR) dated 15th March 2023)”.
-
Data availability: Not applicable.
References
1. Roy, D. N.; Ahmad, I. Combating Biofilm of ESKAPE Pathogens from Ancient Plant-based Therapy to Modern Nanotechnological Combinations. In A Complete Guidebook on Biofilm Study; Academic Press: Cambridge, MA, 2022; pp 59–94.10.1016/B978-0-323-88480-8.00010-8Suche in Google Scholar
2. Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-acquired Infection and Risk to Human Health. Int. J. Hyg Environ. Health 2022, 244, 114006; https://doi.org/10.1016/j.ijheh.2022.114006.Suche in Google Scholar PubMed
3. Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40; https://doi.org/10.1007/s00239-019-09914-3.Suche in Google Scholar PubMed
4. Raheem, N.; Straus, S. K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019, 10, 2866; https://doi.org/10.3389/fmicb.2019.02866.Suche in Google Scholar PubMed PubMed Central
5. Khatoon, Z.; McTiernan, C. D.; Suuronen, E. J.; Mah, T. F.; Alarcon, E. I. Bacterial Biofilm Formation on Implantable Devices and Approaches to its Treatment and Prevention. Heliyon 2018, 4 (12), e01067; https://doi.org/10.1016/j.heliyon.2018.e01067.Suche in Google Scholar PubMed PubMed Central
6. Cai, Y.; Wang, J.; Liu, X.; Wang, R.; Xia, L. A Review of the Combination Therapy of Low Frequency Ultrasound with Antibiotics. BioMed Res. Int. 2017, 2017, 1–14; https://doi.org/10.1155/2017/2317846.Suche in Google Scholar PubMed PubMed Central
7. Hu, X.; Huang, Y. Y.; Wang, Y.; Wang, X.; Hamblin, M. R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299; https://doi.org/10.3389/fmicb.2018.01299.Suche in Google Scholar PubMed PubMed Central
8. Nguyen, H. T.; Nguyen, T. H.; Otto, M. The Staphylococcal Exopolysaccharide PIA–Biosynthesis and Role in Biofilm Formation, Colonization, and Infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334; https://doi.org/10.1016/j.csbj.2020.10.027.Suche in Google Scholar PubMed PubMed Central
9. Ramakrishnan, R.; Singh, A. K.; Singh, S.; Chakravortty, D.; Das, D. Enzymatic Dispersion of Biofilms: An Emerging Biocatalytic Avenue to Combat Biofilm-mediated Microbial Infections. J. Biol. Chem. 2022, 298, 102352; https://doi.org/10.1016/j.jbc.2022.102352.Suche in Google Scholar PubMed PubMed Central
10. Opdensteinen, P.; Dietz, S. J.; Gengenbach, B. B.; Buyel, J. F. Expression of Biofilm-degrading Enzymes in Plants and Automated High-throughput Activity Screening Using Experimental Bacillus Subtilis Biofilms. Front. Bioeng. Biotechnol. 2021, 9, 708150; https://doi.org/10.3389/fbioe.2021.708150.Suche in Google Scholar PubMed PubMed Central
11. Ye, J.; Chen, X. Current Promising Strategies Against Antibiotic-Resistant Bacterial Infections. Antibiotics 2022, 12 (1), 67; https://doi.org/10.3390/antibiotics12010067.Suche in Google Scholar PubMed PubMed Central
12. Pattnaik, S.; Mishra, M.; Singh, H.; Naik, P. K. Novel Perspectives on Phytochemicals-based Approaches for Mitigation of Biofilms in ESKAPE Pathogens: Recent Trends and Future Avenues. Recent Front. Phytochem. 2023, 433–454; https://doi.org/10.1016/b978-0-443-19143-5.00005-0.Suche in Google Scholar
13. Kalpana, B. J.; Aarthy, S.; Pandian, S. K. Antibiofilm Activity of α-Amylase from Bacillus Subtilis S8-18 Against Biofilm Forming Human Bacterial Pathogens. Appl. Biochem. Biotechnol. 2012, 167, 1778–1794; https://doi.org/10.1007/s12010-011-9526-2.Suche in Google Scholar PubMed
14. Długosz, O.; Matysik, J.; Matyjasik, W.; Banach, M. Catalytic and Antimicrobial Properties of α-Amylase Immobilised on the Surface of Metal Oxide Nanoparticles. J. Cluster Sci. 2021, 32, 1609–1622; https://doi.org/10.1007/s10876-020-01921-5.Suche in Google Scholar
15. Sharma, A.; Rishi, P.; Singh, R. In Vitro and in Vivo Evaluation of DNase I in Reinstating Antibiotic Efficacy Against Klebsiella pneumoniae Biofilms. Pathog. Dis. 2023, 81, ftad001; https://doi.org/10.1093/femspd/ftad001.Suche in Google Scholar PubMed
16. Deng, W.; Lei, Y.; Tang, X.; Li, D.; Liang, J.; Luo, J.; Liu, L.; Zhang, W.; Ye, L.; Kong, J.; Wang, K. DNase Inhibits Early Biofilm Formation in Pseudomonas Aeruginosa-or Staphylococcus Aureus-induced Empyema Models. Front. Cell. Infect. Microbiol. 2022, 12, 917038; https://doi.org/10.3389/fcimb.2022.917038.Suche in Google Scholar PubMed PubMed Central
17. Walsh, D.; Parmenter, C.; Bakker, S. E.; Lithgow, T.; Traven, A.; Harrison, F. A new Model of Endotracheal Tube Biofilm Identifies Combinations of Matrix-degrading Enzymes and Antimicrobials Able to Eradicate Biofilms of Pathogens That Cause Ventilator-associated Pneumonia. Microbiology 2024, 170 (8), 001480; https://doi.org/10.1099/mic.0.001480.Suche in Google Scholar PubMed PubMed Central
18. Chaieb, K.; Kouidhi, B.; Hosawi, S. B.; Baothman, O. A.; Zamzami, M. A.; Altayeb, H. N. Computational Screening of Natural Compounds as Putative Quorum Sensing Inhibitors Targeting Drug Resistance Bacteria: Molecular Docking and Molecular Dynamics Simulations. Comput. Biol. Med. 2022, 145, 105517; https://doi.org/10.1016/j.compbiomed.2022.105517.Suche in Google Scholar PubMed
19. Mishra, R.; Panda, A. K.; De Mandal, S.; Shakeel, M.; Bisht, S. S.; Khan, J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-forming Pathogens. Front. Microbiol. 2020, 11, 566325; https://doi.org/10.3389/fmicb.2020.566325.Suche in Google Scholar PubMed PubMed Central
20. Daoui, S.; Parlak, C.; Direkel, Ş.; Ramasami, P.; Abuelizz, H. A.; Oulmidi, A.; Benchat, N.; Karrouchi, K. Synthesis, Spectroscopic Characterization, Antibacterial Activity, Reactivity Parameters, and Molecular Docking Studies of Some Pyridazine Derivatives. ChemistrySelect 2024, 9, e202402996; https://doi.org/10.1002/slct.202402996.Suche in Google Scholar
21. Dhonnar, S. L.; Adole, V. A.; More, R. A.; Sadgir, N. V.; Jagdale, B. S.; Pawar, T. B.; Elzagheid, M. I.; Rhyman, L.; Ramasami, P. Synthesis, Molecular Structure, Electronic, Spectroscopic, NLO and Antimicrobial Study of N-Benzyl-2-(5-aryl)aniline Derivatives. J. Mol. Struct. 2022, 1262, 133017; https://doi.org/10.1016/j.molstruc.2022.133017.Suche in Google Scholar
22. Rajagopal, K.; Dhandayutham, S.; Nandhagopal, M.; Narayanasamy, M.; Elzagheid, M. I.; Rhyman, L.; Ramasami, P. Thiazole Derivatives: Synthesis, Characterization, Biological and DFT Studies. J. Mol. Struct. 2022, 1255, 132374; https://doi.org/10.1016/j.molstruc.2022.132374.Suche in Google Scholar
23. Qais, F. A.; Shafiq, A.; Ahmad, I.; Husain, F. M.; Khan, R. A.; Hassan, I. Green Synthesis of Silver Nanoparticles Using Carum Copticum: Assessment of its Quorum Sensing and Biofilm Inhibitory Potential Against Gram Negative Bacterial Pathogens. Microb. Pathog. 2020, 144, 104172; https://doi.org/10.1016/j.micpath.2020.104172.Suche in Google Scholar PubMed
24. Veiga, A.; Maria da Graça, T. T.; Rossa, L. S.; Mengarda, M.; Stofella, N. C.; Oliveira, L. J.; Gonçalves, A. G.; Murakami, F. S. Colorimetric Microdilution Assay: Validation of a Standard Method for Determination of MIC, IC50%, and IC90% of Antimicrobial Compounds. J. Microbiol. Methods 2019, 162, 50–61; https://doi.org/10.1016/j.mimet.2019.05.003.Suche in Google Scholar PubMed
25. O’Toole, G. A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011 (47), 2437. Published 2011 Jan 30; https://doi.org/10.3791/2437.Suche in Google Scholar PubMed PubMed Central
26. https://emerypharma.com/solutions/cell-microbiology-services/antimicrobial-synergy-study-checkerboard-testing/.Suche in Google Scholar
27. Blumenthal, I.; Davis, L. R.; Berman, C. M.; Griswold, K. E. Nonclassical Antagonism Between Human Lysozyme and AMPs Against Pseudomonas aeruginosa. FEBS Open Bio. 2021, 11 (3), 705–713; https://doi.org/10.1002/2211-5463.13094.Suche in Google Scholar PubMed PubMed Central
28. Schilcher, K.; Horswill, A. R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84 (3), 10–1128; https://doi.org/10.1128/mmbr.00026-19.Suche in Google Scholar PubMed PubMed Central
29. Vuotto, C.; Longo, F.; Balice, M. P.; Donelli, G.; Varaldo, P. E. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae. Pathogens 2014, 3 (3), 743–758; https://doi.org/10.3390/pathogens3030743.Suche in Google Scholar PubMed PubMed Central
30. Tian, M.; Yan, B.; Jiang, R.; Liu, C.; Li, Y.; Xu, B.; Guo, S.; Li, X. Activity of Polymyxin B Combined with Cefepime-avibactam Against the Biofilms of Polymyxin B-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae in In Vitro and In Vivo Models. BMC Microbiol. 2024, 24, 409; https://doi.org/10.1186/s12866-024-03571-3.Suche in Google Scholar PubMed PubMed Central
31. Kanwar, K.; Pandey, R.; Gezici, S.; Azmi, W. Enzymes as Competent Tool for Efficient Management of Pathogen’s Biofilms. Ann. Phytomed. 2019, 8 (1), 70–81; https://doi.org/10.21276/ap.2019.8.1.8.Suche in Google Scholar
32. Silano, V.; Barat Baviera, J. M.; Bolognesi, C.; Brüschweiler, B. J.; Cocconcelli, P. S.; Crebelli, R.; Gott, D. M.; Grob, K.; Lampi, E.; Mortensen, A., EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). Safety Evaluation of the Food Enzyme α‐Amylase from the Genetically Modified Bacillus Licheniformis Strain NZYM‐KE. EFSA J. 2021, 19 (3), e06433; https://doi.org/10.2903/j.efsa.2021.6433.Suche in Google Scholar PubMed PubMed Central
33. Ranasinha, C.; Assoufi, B.; Geddes, D.; Hodson, M.; Empey, D.; Shak, S.; Christiansen, D.; Fuchs, H. Efficacy and Safety of Short-term Administration of Aerosolised Recombinant Human DNase I in Adults with Stable Stage Cystic Fibrosis. The Lancet 1993, 342 (8865), 199–202; https://doi.org/10.1016/0140-6736(93)92297-7.Suche in Google Scholar PubMed
34. Karygianni, L.; Attin, T.; Thurnheer, T. Combined DNase and Proteinase Treatment Interferes with Composition and Structural Integrity of Multispecies Oral Biofilms. J. Clin. Med. 2020, 9 (4), 983; https://doi.org/10.3390/jcm9040983.Suche in Google Scholar PubMed PubMed Central
35. Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. Biofilms: An Emergent form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14 (9), 563–575; https://doi.org/10.1038/nrmicro.2016.94.Suche in Google Scholar PubMed
36. Wang, S.; Zhao, Y.; Breslawec, A. P.; Liang, T.; Deng, Z.; Kuperman, L. L.; Yu, Q. Strategy to Combat Biofilms: A Focus on Biofilm Dispersal Enzymes. npj Biofilms Microbiomes 2023, 9 (1), 63; https://doi.org/10.1038/s41522-023-00427-y.Suche in Google Scholar PubMed PubMed Central
37. Palafox-Rivera, P.; Tapia-Rodriguez, M. R.; Lopez-Romero, J. C.; Lugo-Flores, M. A.; Quintero-Cabello, K. P.; Silva-Espinoza, B. A.; Cruz-Valenzuela, M. R.; Nazzaro, F.; Ayala-Zavala, J. F. Exploring the Potential of Hydrolytic Enzymes Combined with Antibacterial Agents to Disrupt Pathogenic Biofilms and Disinfect Released Cells. Biofouling 2025, 41 (2), 131–143; https://doi.org/10.1080/08927014.2024.2435018.Suche in Google Scholar PubMed
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts
- Effect of chemical modification using glyoxylic acid on the stability of α-amylase from Aspergillus fumigatus
- A new, innovative, simple method to determine the concentration of phosphate and sulphate ions in an aqueous extract of plants using conductometric titration
- Metalloporphyrin-mediated oxidative degradation of risperidone under mild conditions: an LC-MS/MS study
- Synthesis of novel ternary herbicide-layered double hydroxide hybrids via the ion exchange method
- Water Quality Index and the quality of freshwater resource uMhlathuze river, Kwazulu-Natal, South Africa: A Review
- Experimental ‘in-Vitro’ investigation on bio-chemical constituents, radical scavenging activity, and reducing power assay of cow urine
- Enhanced biofilm disruption in ESKAPE pathogens through synergistic activity of EPS degrading enzymes
- Green synthesis of silver nanoparticles using a bioflocculant produced by a kombucha tea yeast isolate for antimicrobial and biosafety testing
- Characterization of metabolite compounds from endophytic fungi associated with white turi plant (Sesbania grandiflora) and their antibacterial activity
- Enhanced photocatalytic degradation of methylene blue dye using TiO2 nanoparticles obtained via chemical and green synthesis: a comparative analysis
- Characterization of electrocatalysts for the oxygen evolution reaction OER: a bi-metal study IrM oxides (Ru, and Au)
- Development of a second harmonic generation microscope optimized for biomaterial studies
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts
- Effect of chemical modification using glyoxylic acid on the stability of α-amylase from Aspergillus fumigatus
- A new, innovative, simple method to determine the concentration of phosphate and sulphate ions in an aqueous extract of plants using conductometric titration
- Metalloporphyrin-mediated oxidative degradation of risperidone under mild conditions: an LC-MS/MS study
- Synthesis of novel ternary herbicide-layered double hydroxide hybrids via the ion exchange method
- Water Quality Index and the quality of freshwater resource uMhlathuze river, Kwazulu-Natal, South Africa: A Review
- Experimental ‘in-Vitro’ investigation on bio-chemical constituents, radical scavenging activity, and reducing power assay of cow urine
- Enhanced biofilm disruption in ESKAPE pathogens through synergistic activity of EPS degrading enzymes
- Green synthesis of silver nanoparticles using a bioflocculant produced by a kombucha tea yeast isolate for antimicrobial and biosafety testing
- Characterization of metabolite compounds from endophytic fungi associated with white turi plant (Sesbania grandiflora) and their antibacterial activity
- Enhanced photocatalytic degradation of methylene blue dye using TiO2 nanoparticles obtained via chemical and green synthesis: a comparative analysis
- Characterization of electrocatalysts for the oxygen evolution reaction OER: a bi-metal study IrM oxides (Ru, and Au)
- Development of a second harmonic generation microscope optimized for biomaterial studies