Abstract
This study investigated the catalytic potential of metal-loaded gamma alumina catalysts in the ozonation of 1,2-dichlorobenzene (DCB) under ambient reaction conditions. Different metal (Fe, Ni, and V) loaded gamma alumina catalysts were synthesized via wet impregnation technique and characterized using ICP-OES, FT-IR, BET, XRD, TEM, and SEM techniques. To identify the reaction products, Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) techniques. The ozonation of 1,2-dichlorobenzene was studied within a glass reactor, where each substrate was exposed to ozone for varying time durations between 3 and 24 h. The catalytic performance of a range of metal-loaded γ-Al2O3 catalysts was assessed by examining their conversion and selectivity capabilities. During the oxidative degradation of 1,2-dichlorobenzene, 3,4-dichloro-2,5-furandione (DHF) and mucochloric acid (MCA) were identified as the ozonation products. Among the studied catalysts, 2.5 % Ni/γ-Al2O3 exhibited outstanding catalytic activity towards the conversion of 1,2-dichlorobenzene yielding a significant 65 % conversion of 1,2-dichlorobenzene after 24 h of ozonation.
Funding source: National Research Foundation
Award Identifier / Grant number: Developmental Grant for Rated Researchers
Award Identifier / Grant number: Incentive Fund Grant (Grant No: 132468)
Acknowledgments
The authors acknowledge the EMU at the University of KwaZulu-Natal, Westville campus, for providing us access to their TEM facility.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Viswanadha Srirama Rajasekhar Pullabhotla: Conceptualization, Supervision, Methodology, Formal analysis, Writing – Original Draft, Review & Editing, Funding acquisition. Mkhize N: Formal analysis, Investigation, Writing – Original Draft.
-
Use of Large Language Models, AI and Machine Learning Tools: Authors declare that no use of AI in the preparation of the manuscript
-
Conflict of interest: Authors declare no conflict of interest.
-
Research funding: Rajasekhar Pullabhotla would like to acknowledge the National Research Foundation (NRF, South Africa) for the financial support in the form of the Incentive Fund Grant (Grant No: 103691) and Research Developmental Grant for Rated Researchers (Grant No: 112145).
-
Data availability: The data will be made available in the form of a Masters thesis in the University of Zululand’s Library repository.
References
1. Aravind Kumar, J.; Krithiga, T.; Sathish, S.; Renita, A. A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S. K. R.; Sillanpaa, M. Persistent Organic Pollutants in Water Resources: Fate, Occurrence, Characterization and Risk Analysis. Sci. Total Environ. 2022, 831, 154808. https://doi.org/10.1016/j.scitotenv.2022.154808.Search in Google Scholar PubMed
2. Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment: Review Article. Interdiscipl. Toxicol. 2016, 9, 90–100. https://doi.org/10.1515/intox-2016-0012.Search in Google Scholar PubMed PubMed Central
3. Mkhize, N.; Vashistha, V. K.; Pullabhotla, V. S. R. Catalytic Oxidation of 1,2-Dichlorobenzene over Metal-Supported on ZrO2 Catalysts. Top. Catal. 2024, 67, 409–421. https://doi.org/10.1007/s11244-023-01876-7.Search in Google Scholar
4. Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollut. Rep. 2015, 1, 167–176. https://doi.org/10.1007/s40726-015-0015-z.Search in Google Scholar
5. Pandis, P. K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M. G.; Sourkouni, G.; Zorpas, A. A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. https://doi.org/10.3390/chemengineering6010008.Search in Google Scholar
6. O’Shea, K. E.; Dionysiou, D. D. Advanced Oxidation Processes for Water Treatment. J. Phys. Chem. Lett. 2012, 3, 2112–2113. https://doi.org/10.1021/jz300929x.Search in Google Scholar
7. Khan, Z. U. H.; Gul, N. S.; Sabahat, S.; Sun, J.; Tahir, K.; Shah, N. S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; Khan, T. M.; Khasim, S.; Farooq, U.; Wu, J. Removal of Organic Pollutants through Hydroxyl Radical-Based Advanced Oxidation Processes. Ecotoxicol. Environ. Saf. 2023, 267, 115564. https://doi.org/10.1016/j.ecoenv.2023.115564.Search in Google Scholar PubMed
8. Coha, M.; Farinelli, G.; Tiraferri, A.; Minella, M.; Vione, D. Advanced Oxidation Processes in the Removal of Organic Substances from Produced Water: Potential, Configurations, and Research Needs. Chem. Eng. J. 2021, 414, 128668. https://doi.org/10.1016/j.cej.2021.128668.Search in Google Scholar
9. Nidheesh, P. V.; Couras, C.; Karim, A. V.; Nadais, H. A Review of Integrated Advanced Oxidation Processes and Biological Processes for Organic Pollutant Removal. Chem. Eng. Commun. 2022, 209, 390–432. https://doi.org/10.1080/00986445.2020.1864626.Search in Google Scholar
10. Gong, C.; Xu, G.; Chen, L.; Jia, J.; Peng, Y. Catalytic Advanced Oxidation Processes (AOPs) in Water Treatment by Covalent Organic Frameworks-Based Materials: A Review. Res. Chem. Intermed. 2021, 47, 3109–3130. https://doi.org/10.1007/s11164-021-04523-6.Search in Google Scholar
11. Rayaroth, M. P.; Boczkaj, G.; Aubry, O.; Aravind, U. K.; Aravindakumar, C. T. Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review. Water 2023, 15, 1615. https://doi.org/10.3390/w15081615.Search in Google Scholar
12. Nawrocki, J.; Kasprzyk-Hordern, B. The Efficiency and Mechanisms of Catalytic Ozonation. Appl. Catal. B: Environ. 2010, 99, 27–42. https://doi.org/10.1016/j.apcatb.2010.06.033.Search in Google Scholar
13. Mkhize, N.; Singh, P. P.; Das, D. K.; Pullabhotla, V. S. R. Ozone Initiated Oxidation of 1,2-Dichlorobenzene Catalyzed by Manganese Loaded Gamma Alumina and Silica. Catal. Today 2022, 388–389, 301–311. https://doi.org/10.1016/j.cattod.2020.06.025.Search in Google Scholar
14. Fiorenza, R. Heterogeneous Catalysis and Advanced Oxidation Processes (AOPs) for Environmental Protection (VOC Oxidation, Air and Water Purification). Catalysts 2022, 12, 317. https://doi.org/10.3390/catal12030317.Search in Google Scholar
15. S. Jafarinejad, Cost-Effective Catalytic Materials for AOP Treatment Units. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Gil, A., Galeano, L. A., Vicente, M. Á., Eds.; Springer International Publishing, Cham, 2017; pp. 309–343.10.1007/698_2017_77Search in Google Scholar
16. Rekhate, C. V.; Srivastava, J. K. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater – A Review. Chem. Eng. J. Adv. 2020, 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031.Search in Google Scholar
17. Amin, N. A. S.; Akhtar, J.; Rai, H. K. Catalytic Ozonation of Aqueous Phenol over Metal-Loaded HZSM-5. Water Sci. Technol. 2011, 63, 1651–1656. https://doi.org/10.2166/wst.2011.313.Search in Google Scholar PubMed
18. Malvestiti, J. A.; Cavalcante, R. P.; Luiz Tornisielo, V.; Falcão Dantas, R. Metals as Catalysts for Ozonation. In Heavy Metals – Recent Advances; Almayyahi, B. A., Ed.; IntechOpen: Iraq, 2023.10.5772/intechopen.109706Search in Google Scholar
19. Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249.Search in Google Scholar PubMed
20. Ncanana, Z. S.; Sadgrove, N. J.; Rajasekhar Pullabhotla, V. S. R. Oxidative Degradation of Cresol Isomers Using Ozone in the Presence of SiO2-Supported Nickel, Iron, Manganese and Vanadium Catalysts. Catal. Today 2020, 358, 284–293. https://doi.org/10.1016/j.cattod.2019.10.005.Search in Google Scholar
21. Yang, D.; Meng, F.; Zhang, Z.; Liu, X. Enhanced Catalytic Ozonation by Mn–Ce Oxide-Loaded Al2O3 Catalyst for Ciprofloxacin Degradation. ACS Omega 2023, 8, 21823–21829. https://doi.org/10.1021/acsomega.3c01302.Search in Google Scholar PubMed PubMed Central
22. Ponnusamy, G.; Farzaneh, H.; Tong, Y.; Lawler, J.; Liu, Z.; Saththasivam, J. Enhanced Catalytic Ozonation of Ibuprofen Using a 3D Structured Catalyst with MnO2 Nanosheets on Carbon Microfibers. Sci. Rep. 2021, 11, 6342. https://doi.org/10.1038/s41598-021-85651-2.Search in Google Scholar PubMed PubMed Central
23. Chen, J.; Tu, Y.; Shao, G.; Zhang, F.; Zhou, Z.; Tian, S.; Ren, Z. Catalytic Ozonation Performance of Calcium-Loaded Catalyst (Ca-C/Al2O3) for Effective Treatment of High Salt Organic Wastewater. Sep. Purif. Technol. 2022, 301, 121937. https://doi.org/10.1016/j.seppur.2022.121937.Search in Google Scholar
24. Mkhondwane, S. T.; Rajasekhar Pullabhotla, V. S. R. Ozone Initiated pH Dependent Oxidation of Cyclohexane Over Fe Supported SiO2 and γ-Al2O3 Catalysts. Top. Catal. 2023, 66, 461–476. https://doi.org/10.1007/s11244-022-01761-9.Search in Google Scholar
25. Zhang, Y.; Lv, Y.; Mo, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area. Catalysts 2022, 12, 1416. https://doi.org/10.3390/catal12111416.Search in Google Scholar
26. Ishaq, K.; Saka, A. A.; Kamardeen, A. O.; Abdulrahman, A.; Adekunle, I. K.; Afolabi, A. S. Application of γ-Alumina as Catalyst Support for the Synthesis of CNTs in a CVD Reactor. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 035012. https://doi.org/10.1088/2043-6254/aad5bb.Search in Google Scholar
27. Urbonavicius, M.; Varnagiris, S.; Pranevicius, L.; Milcius, D. Production of Gamma Alumina Using Plasma-Treated Aluminum and Water Reaction Byproducts. Materials 2020, 13, 1300. https://doi.org/10.3390/ma13061300.Search in Google Scholar PubMed PubMed Central
28. Xu, R.; Nabet, H.; Breton, A.; Baldoni-Andrey, P.; Lesage, N.; Cacciaguerra, T.; Hulea, V.; Fajula, F.; Galarneau, A. Highly Efficient Mesoporous Mg/γ-Al2O3 Catalysts for Ozonation of Saline Petroleum Effluents. Petrol. Chem. 2020, 60, 858–880. https://doi.org/10.1134/S0965544120080150.Search in Google Scholar
29. Ates, M.; Demir, V.; Arslan, Z.; Daniels, J.; Farah, I. O.; Bogatu, C. Evaluation of Alpha and Gamma Aluminum Oxide Nanoparticle Accumulation, Toxicity, and Depuration in Artemia salina Larvae: Al2O3NP and Artemia Salina Larvae. Environ. Toxicol. 2015, 30, 109–118. https://doi.org/10.1002/tox.21917.Search in Google Scholar PubMed PubMed Central
30. Iwamoto, M.; Horikoshi, M.; Hashimoto, R.; Shimano, K.; Sawaguchi, T.; Teduka, H.; Matsukata, M. Higher Activity of Ni/γ-Al2O3 over Fe/γ-Al2O3 and Ru/γ-Al2O3 for Catalytic Ammonia Synthesis in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. Catalysts 2020, 10, 590. https://doi.org/10.3390/catal10050590.Search in Google Scholar
31. Jawad, K. A. M.; Saed, U. A.; Alwan, H. H. Synthesis of Nano Platinum-Tungsten Supported on Gamma-Alumina Catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022103. https://doi.org/10.1088/1757-899X/928/2/022103.Search in Google Scholar
32. Pinna, F. Supported Metal Catalysts Preparation. Catal. Today 1998, 41, 129–137. https://doi.org/10.1016/S0920-5861(98)00043-1.Search in Google Scholar
33. Azri, N.; Irmawati, R.; Nda-Umar, U. I.; Saiman, M. I.; Taufiq-Yap, Y. H. Promotional Effect of Transition Metals (Cu, Ni, Co, Fe, Zn)–Supported on Dolomite for Hydrogenolysis of Glycerol into 1,2-Propanediol. Arab. J. Chem. 2021, 14, 103047. https://doi.org/10.1016/j.arabjc.2021.103047.Search in Google Scholar
34. Mabate, T. P.; Maqunga, N. P.; Ntshibongo, S.; Maumela, M.; Bingwa, N. Metal oxides and their roles in heterogeneous catalysis: special emphasis on synthesis protocols, intrinsic properties, and their influence in transfer hydrogenation reactions. SN Appl. Sci. 2023, 5, 196. https://doi.org/10.1007/s42452-023-05416-6.Search in Google Scholar
35. Shah, J.; Jan, M. R.; Khitab, F. Sonophotocatalytic degradation of textile dyes over Cu impregnated ZnO catalyst in aqueous solution. Process Saf. Environ. Prot. 2018, 116, 149–158. https://doi.org/10.1016/j.psep.2018.01.008.Search in Google Scholar
36. Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal Organic Frameworks as Efficient Adsorbents for Drugs from Wastewater. Mater. Today Commun. 2022, 31, 103514. https://doi.org/10.1016/j.mtcomm.2022.103514.Search in Google Scholar
37. Djošić, M. S.; Mišković-Stanković, V. B.; Janaćković, Dj.T.; Kačarević-Popović, Z. M.; Petrović, R. D. Electrophoretic Deposition and Characterization of Boehmite Coatings on Titanium Substrate. Colloids Surf. A: Physicochem. Eng. Asp. 2006, 274, 185–191. https://doi.org/10.1016/j.colsurfa.2005.08.048.Search in Google Scholar
38. Samain, L.; Jaworski, A.; Edén, M.; Ladd, D. M.; Seo, D.-K.; Javier Garcia-Garcia, F.; Häussermann, U. Structural Analysis of Highly Porous γ-Al2O3. J. Solid State Chem. 2014, 217, 1–8. https://doi.org/10.1016/j.jssc.2014.05.004.Search in Google Scholar
39. Segal, F. M.; Correa, M. F.; Bacani, R.; Castanheira, B.; Politi, M. J.; Brochsztain, S.; Triboni, E. R. A Novel Synthesis Route of Mesoporous γ-Alumina from Polyoxohydroxide Aluminum. Mater. Res. 2018, 21. https://doi.org/10.1590/1980-5373-mr-2017-0674.Search in Google Scholar
40. Ma, X.; Feng, X.; Guo, J.; Cao, H.; Suo, X.; Sun, H.; Zheng, M. Catalytic Oxidation of 1,2-Dichlorobenzene over Ca-Doped FeOx Hollow Microspheres. Appl. Catal. B: Environ. 2014, 147, 666–676. https://doi.org/10.1016/j.apcatb.2013.10.003.Search in Google Scholar
41. Tsyganenko, A. A.; Mardilovich, P. P. Structure of Alumina Surfaces. Faraday Trans. 1996, 92, 4843. https://doi.org/10.1039/ft9969204843.Search in Google Scholar
42. Romero Toledo, R.; Ruiz Santoyo, V.; Moncada Sánchez, C. D.; Martínes Rosales, M. Effect of Aluminum Precursor on Physicochemical Properties of Al2O3 by Hydrolysis/Precipitation Method. Nova Scientia 2018, 10, 83–99. https://doi.org/10.21640/ns.v10i20.1217.Search in Google Scholar
43. O’Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Santa Ana, M. A.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Vanadate Conformation Variations in Vanadium Pentoxide Nanostructures. J. Electrochem. Soc. 2007, 154, K29. https://doi.org/10.1149/1.2746556.Search in Google Scholar
44. Mkhondwane, S. T.; Pullabhotla, V. S. R. Highly Selective pH-Dependent Ozonation of Cyclohexane over Mn/γ-Al2O3 Catalysts at Ambient Reaction Conditions. Catalysts 2019, 9, 958. https://doi.org/10.3390/catal9110958.Search in Google Scholar
45. Ronduda, H.; Zybert, M.; Patkowski, W.; Sobczak, K.; Moszyński, D.; Albrecht, A.; Sarnecki, A.; Raróg-Pilecka, W. On the Effect of Metal Loading on the Performance of Co Catalysts Supported on Mixed MgO–La2O3 Oxides for Ammonia Synthesis. R. Soc. Chem. Adv. 2022, 12, 33876–33888. https://doi.org/10.1039/D2RA06053A.Search in Google Scholar PubMed PubMed Central
46. Aghbolaghy, M.; Ghavami, M.; Soltan, J.; Chen, N. Effect of Active Metal Loading on Catalyst Structure and Performance in Room Temperature Oxidation of Acetone by Ozone. J. Ind. Eng. Chem. 2019, 77, 118–127. https://doi.org/10.1016/j.jiec.2019.04.026.Search in Google Scholar
47. Chetty, E. C.; Maddila, S.; Southway, C.; Jonnalagadda, S. B. Ozone Initiated Ni/Metal Oxide Catalyzed Conversion of 1,2-Dichlorobenzene to Mucochloric Acid in Aqueous Solutions. Ind. Eng. Chem. Res. 2012, 51, 2864–2873. https://doi.org/10.1021/ie202570e.Search in Google Scholar
48. Chetty, E. C.; Dasireddy, V. B.; Maddila, S.; Jonnalagadda, S. B. Efficient Conversion of 1,2-Dichlorobenzene to Mucochloric Acid with Ozonation Catalyzed by V2O5 Loaded Metal Oxides. Appl. Catal. B: Environ. 2012, 117–118, 18–28. https://doi.org/10.1016/j.apcatb.2012.01.004.Search in Google Scholar
49. Song, Y.; Liu, H.; Liu, S.; He, D. Partial Oxidation of Methane to Syngas over Ni/Al2O3 Catalysts Prepared by a Modified Sol−Gel Method. Energy Fuels 2009, 23, 1925–1930. https://doi.org/10.1021/ef800954a.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0342).
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts
- Effect of chemical modification using glyoxylic acid on the stability of α-amylase from Aspergillus fumigatus
- A new, innovative, simple method to determine the concentration of phosphate and sulphate ions in an aqueous extract of plants using conductometric titration
- Metalloporphyrin-mediated oxidative degradation of risperidone under mild conditions: an LC-MS/MS study
- Synthesis of novel ternary herbicide-layered double hydroxide hybrids via the ion exchange method
- Water Quality Index and the quality of freshwater resource uMhlathuze river, Kwazulu-Natal, South Africa: A Review
- Experimental ‘in-Vitro’ investigation on bio-chemical constituents, radical scavenging activity, and reducing power assay of cow urine
- Enhanced biofilm disruption in ESKAPE pathogens through synergistic activity of EPS degrading enzymes
- Green synthesis of silver nanoparticles using a bioflocculant produced by a kombucha tea yeast isolate for antimicrobial and biosafety testing
- Characterization of metabolite compounds from endophytic fungi associated with white turi plant (Sesbania grandiflora) and their antibacterial activity
- Enhanced photocatalytic degradation of methylene blue dye using TiO2 nanoparticles obtained via chemical and green synthesis: a comparative analysis
- Characterization of electrocatalysts for the oxygen evolution reaction OER: a bi-metal study IrM oxides (Ru, and Au)
- Development of a second harmonic generation microscope optimized for biomaterial studies
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts
- Effect of chemical modification using glyoxylic acid on the stability of α-amylase from Aspergillus fumigatus
- A new, innovative, simple method to determine the concentration of phosphate and sulphate ions in an aqueous extract of plants using conductometric titration
- Metalloporphyrin-mediated oxidative degradation of risperidone under mild conditions: an LC-MS/MS study
- Synthesis of novel ternary herbicide-layered double hydroxide hybrids via the ion exchange method
- Water Quality Index and the quality of freshwater resource uMhlathuze river, Kwazulu-Natal, South Africa: A Review
- Experimental ‘in-Vitro’ investigation on bio-chemical constituents, radical scavenging activity, and reducing power assay of cow urine
- Enhanced biofilm disruption in ESKAPE pathogens through synergistic activity of EPS degrading enzymes
- Green synthesis of silver nanoparticles using a bioflocculant produced by a kombucha tea yeast isolate for antimicrobial and biosafety testing
- Characterization of metabolite compounds from endophytic fungi associated with white turi plant (Sesbania grandiflora) and their antibacterial activity
- Enhanced photocatalytic degradation of methylene blue dye using TiO2 nanoparticles obtained via chemical and green synthesis: a comparative analysis
- Characterization of electrocatalysts for the oxygen evolution reaction OER: a bi-metal study IrM oxides (Ru, and Au)
- Development of a second harmonic generation microscope optimized for biomaterial studies