Startseite Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts

  • Nomthandazo Mkhize und Viswanadha Srirama Rajasekhar Pullabhotla ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. Februar 2025

Abstract

This study investigated the catalytic potential of metal-loaded gamma alumina catalysts in the ozonation of 1,2-dichlorobenzene (DCB) under ambient reaction conditions. Different metal (Fe, Ni, and V) loaded gamma alumina catalysts were synthesized via wet impregnation technique and characterized using ICP-OES, FT-IR, BET, XRD, TEM, and SEM techniques. To identify the reaction products, Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) techniques. The ozonation of 1,2-dichlorobenzene was studied within a glass reactor, where each substrate was exposed to ozone for varying time durations between 3 and 24 h. The catalytic performance of a range of metal-loaded γ-Al2O3 catalysts was assessed by examining their conversion and selectivity capabilities. During the oxidative degradation of 1,2-dichlorobenzene, 3,4-dichloro-2,5-furandione (DHF) and mucochloric acid (MCA) were identified as the ozonation products. Among the studied catalysts, 2.5 % Ni/γ-Al2O3 exhibited outstanding catalytic activity towards the conversion of 1,2-dichlorobenzene yielding a significant 65 % conversion of 1,2-dichlorobenzene after 24 h of ozonation.


Corresponding author: Viswanadha Srirama Rajasekhar Pullabhotla, Department of Chemistry, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications held on 12-16 August 2024.

Award Identifier / Grant number: Developmental Grant for Rated Researchers

Award Identifier / Grant number: Incentive Fund Grant (Grant No: 132468)

Acknowledgments

The authors acknowledge the EMU at the University of KwaZulu-Natal, Westville campus, for providing us access to their TEM facility.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Viswanadha Srirama Rajasekhar Pullabhotla: Conceptualization, Supervision, Methodology, Formal analysis, Writing – Original Draft, Review & Editing, Funding acquisition. Mkhize N: Formal analysis, Investigation, Writing – Original Draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: Authors declare that no use of AI in the preparation of the manuscript

  5. Conflict of interest: Authors declare no conflict of interest.

  6. Research funding: Rajasekhar Pullabhotla would like to acknowledge the National Research Foundation (NRF, South Africa) for the financial support in the form of the Incentive Fund Grant (Grant No: 103691) and Research Developmental Grant for Rated Researchers (Grant No: 112145).

  7. Data availability: The data will be made available in the form of a Masters thesis in the University of Zululand’s Library repository.

References

1. Aravind Kumar, J.; Krithiga, T.; Sathish, S.; Renita, A. A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S. K. R.; Sillanpaa, M. Persistent Organic Pollutants in Water Resources: Fate, Occurrence, Characterization and Risk Analysis. Sci. Total Environ. 2022, 831, 154808. https://doi.org/10.1016/j.scitotenv.2022.154808.Suche in Google Scholar PubMed

2. Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment: Review Article. Interdiscipl. Toxicol. 2016, 9, 90–100. https://doi.org/10.1515/intox-2016-0012.Suche in Google Scholar PubMed PubMed Central

3. Mkhize, N.; Vashistha, V. K.; Pullabhotla, V. S. R. Catalytic Oxidation of 1,2-Dichlorobenzene over Metal-Supported on ZrO2 Catalysts. Top. Catal. 2024, 67, 409–421. https://doi.org/10.1007/s11244-023-01876-7.Suche in Google Scholar

4. Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollut. Rep. 2015, 1, 167–176. https://doi.org/10.1007/s40726-015-0015-z.Suche in Google Scholar

5. Pandis, P. K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M. G.; Sourkouni, G.; Zorpas, A. A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. https://doi.org/10.3390/chemengineering6010008.Suche in Google Scholar

6. O’Shea, K. E.; Dionysiou, D. D. Advanced Oxidation Processes for Water Treatment. J. Phys. Chem. Lett. 2012, 3, 2112–2113. https://doi.org/10.1021/jz300929x.Suche in Google Scholar

7. Khan, Z. U. H.; Gul, N. S.; Sabahat, S.; Sun, J.; Tahir, K.; Shah, N. S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; Khan, T. M.; Khasim, S.; Farooq, U.; Wu, J. Removal of Organic Pollutants through Hydroxyl Radical-Based Advanced Oxidation Processes. Ecotoxicol. Environ. Saf. 2023, 267, 115564. https://doi.org/10.1016/j.ecoenv.2023.115564.Suche in Google Scholar PubMed

8. Coha, M.; Farinelli, G.; Tiraferri, A.; Minella, M.; Vione, D. Advanced Oxidation Processes in the Removal of Organic Substances from Produced Water: Potential, Configurations, and Research Needs. Chem. Eng. J. 2021, 414, 128668. https://doi.org/10.1016/j.cej.2021.128668.Suche in Google Scholar

9. Nidheesh, P. V.; Couras, C.; Karim, A. V.; Nadais, H. A Review of Integrated Advanced Oxidation Processes and Biological Processes for Organic Pollutant Removal. Chem. Eng. Commun. 2022, 209, 390–432. https://doi.org/10.1080/00986445.2020.1864626.Suche in Google Scholar

10. Gong, C.; Xu, G.; Chen, L.; Jia, J.; Peng, Y. Catalytic Advanced Oxidation Processes (AOPs) in Water Treatment by Covalent Organic Frameworks-Based Materials: A Review. Res. Chem. Intermed. 2021, 47, 3109–3130. https://doi.org/10.1007/s11164-021-04523-6.Suche in Google Scholar

11. Rayaroth, M. P.; Boczkaj, G.; Aubry, O.; Aravind, U. K.; Aravindakumar, C. T. Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review. Water 2023, 15, 1615. https://doi.org/10.3390/w15081615.Suche in Google Scholar

12. Nawrocki, J.; Kasprzyk-Hordern, B. The Efficiency and Mechanisms of Catalytic Ozonation. Appl. Catal. B: Environ. 2010, 99, 27–42. https://doi.org/10.1016/j.apcatb.2010.06.033.Suche in Google Scholar

13. Mkhize, N.; Singh, P. P.; Das, D. K.; Pullabhotla, V. S. R. Ozone Initiated Oxidation of 1,2-Dichlorobenzene Catalyzed by Manganese Loaded Gamma Alumina and Silica. Catal. Today 2022, 388–389, 301–311. https://doi.org/10.1016/j.cattod.2020.06.025.Suche in Google Scholar

14. Fiorenza, R. Heterogeneous Catalysis and Advanced Oxidation Processes (AOPs) for Environmental Protection (VOC Oxidation, Air and Water Purification). Catalysts 2022, 12, 317. https://doi.org/10.3390/catal12030317.Suche in Google Scholar

15. S. Jafarinejad, Cost-Effective Catalytic Materials for AOP Treatment Units. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Gil, A., Galeano, L. A., Vicente, M. Á., Eds.; Springer International Publishing, Cham, 2017; pp. 309–343.10.1007/698_2017_77Suche in Google Scholar

16. Rekhate, C. V.; Srivastava, J. K. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater – A Review. Chem. Eng. J. Adv. 2020, 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031.Suche in Google Scholar

17. Amin, N. A. S.; Akhtar, J.; Rai, H. K. Catalytic Ozonation of Aqueous Phenol over Metal-Loaded HZSM-5. Water Sci. Technol. 2011, 63, 1651–1656. https://doi.org/10.2166/wst.2011.313.Suche in Google Scholar PubMed

18. Malvestiti, J. A.; Cavalcante, R. P.; Luiz Tornisielo, V.; Falcão Dantas, R. Metals as Catalysts for Ozonation. In Heavy Metals – Recent Advances; Almayyahi, B. A., Ed.; IntechOpen: Iraq, 2023.10.5772/intechopen.109706Suche in Google Scholar

19. Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249.Suche in Google Scholar PubMed

20. Ncanana, Z. S.; Sadgrove, N. J.; Rajasekhar Pullabhotla, V. S. R. Oxidative Degradation of Cresol Isomers Using Ozone in the Presence of SiO2-Supported Nickel, Iron, Manganese and Vanadium Catalysts. Catal. Today 2020, 358, 284–293. https://doi.org/10.1016/j.cattod.2019.10.005.Suche in Google Scholar

21. Yang, D.; Meng, F.; Zhang, Z.; Liu, X. Enhanced Catalytic Ozonation by Mn–Ce Oxide-Loaded Al2O3 Catalyst for Ciprofloxacin Degradation. ACS Omega 2023, 8, 21823–21829. https://doi.org/10.1021/acsomega.3c01302.Suche in Google Scholar PubMed PubMed Central

22. Ponnusamy, G.; Farzaneh, H.; Tong, Y.; Lawler, J.; Liu, Z.; Saththasivam, J. Enhanced Catalytic Ozonation of Ibuprofen Using a 3D Structured Catalyst with MnO2 Nanosheets on Carbon Microfibers. Sci. Rep. 2021, 11, 6342. https://doi.org/10.1038/s41598-021-85651-2.Suche in Google Scholar PubMed PubMed Central

23. Chen, J.; Tu, Y.; Shao, G.; Zhang, F.; Zhou, Z.; Tian, S.; Ren, Z. Catalytic Ozonation Performance of Calcium-Loaded Catalyst (Ca-C/Al2O3) for Effective Treatment of High Salt Organic Wastewater. Sep. Purif. Technol. 2022, 301, 121937. https://doi.org/10.1016/j.seppur.2022.121937.Suche in Google Scholar

24. Mkhondwane, S. T.; Rajasekhar Pullabhotla, V. S. R. Ozone Initiated pH Dependent Oxidation of Cyclohexane Over Fe Supported SiO2 and γ-Al2O3 Catalysts. Top. Catal. 2023, 66, 461–476. https://doi.org/10.1007/s11244-022-01761-9.Suche in Google Scholar

25. Zhang, Y.; Lv, Y.; Mo, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area. Catalysts 2022, 12, 1416. https://doi.org/10.3390/catal12111416.Suche in Google Scholar

26. Ishaq, K.; Saka, A. A.; Kamardeen, A. O.; Abdulrahman, A.; Adekunle, I. K.; Afolabi, A. S. Application of γ-Alumina as Catalyst Support for the Synthesis of CNTs in a CVD Reactor. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 035012. https://doi.org/10.1088/2043-6254/aad5bb.Suche in Google Scholar

27. Urbonavicius, M.; Varnagiris, S.; Pranevicius, L.; Milcius, D. Production of Gamma Alumina Using Plasma-Treated Aluminum and Water Reaction Byproducts. Materials 2020, 13, 1300. https://doi.org/10.3390/ma13061300.Suche in Google Scholar PubMed PubMed Central

28. Xu, R.; Nabet, H.; Breton, A.; Baldoni-Andrey, P.; Lesage, N.; Cacciaguerra, T.; Hulea, V.; Fajula, F.; Galarneau, A. Highly Efficient Mesoporous Mg/γ-Al2O3 Catalysts for Ozonation of Saline Petroleum Effluents. Petrol. Chem. 2020, 60, 858–880. https://doi.org/10.1134/S0965544120080150.Suche in Google Scholar

29. Ates, M.; Demir, V.; Arslan, Z.; Daniels, J.; Farah, I. O.; Bogatu, C. Evaluation of Alpha and Gamma Aluminum Oxide Nanoparticle Accumulation, Toxicity, and Depuration in Artemia salina Larvae: Al2O3NP and Artemia Salina Larvae. Environ. Toxicol. 2015, 30, 109–118. https://doi.org/10.1002/tox.21917.Suche in Google Scholar PubMed PubMed Central

30. Iwamoto, M.; Horikoshi, M.; Hashimoto, R.; Shimano, K.; Sawaguchi, T.; Teduka, H.; Matsukata, M. Higher Activity of Ni/γ-Al2O3 over Fe/γ-Al2O3 and Ru/γ-Al2O3 for Catalytic Ammonia Synthesis in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. Catalysts 2020, 10, 590. https://doi.org/10.3390/catal10050590.Suche in Google Scholar

31. Jawad, K. A. M.; Saed, U. A.; Alwan, H. H. Synthesis of Nano Platinum-Tungsten Supported on Gamma-Alumina Catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022103. https://doi.org/10.1088/1757-899X/928/2/022103.Suche in Google Scholar

32. Pinna, F. Supported Metal Catalysts Preparation. Catal. Today 1998, 41, 129–137. https://doi.org/10.1016/S0920-5861(98)00043-1.Suche in Google Scholar

33. Azri, N.; Irmawati, R.; Nda-Umar, U. I.; Saiman, M. I.; Taufiq-Yap, Y. H. Promotional Effect of Transition Metals (Cu, Ni, Co, Fe, Zn)–Supported on Dolomite for Hydrogenolysis of Glycerol into 1,2-Propanediol. Arab. J. Chem. 2021, 14, 103047. https://doi.org/10.1016/j.arabjc.2021.103047.Suche in Google Scholar

34. Mabate, T. P.; Maqunga, N. P.; Ntshibongo, S.; Maumela, M.; Bingwa, N. Metal oxides and their roles in heterogeneous catalysis: special emphasis on synthesis protocols, intrinsic properties, and their influence in transfer hydrogenation reactions. SN Appl. Sci. 2023, 5, 196. https://doi.org/10.1007/s42452-023-05416-6.Suche in Google Scholar

35. Shah, J.; Jan, M. R.; Khitab, F. Sonophotocatalytic degradation of textile dyes over Cu impregnated ZnO catalyst in aqueous solution. Process Saf. Environ. Prot. 2018, 116, 149–158. https://doi.org/10.1016/j.psep.2018.01.008.Suche in Google Scholar

36. Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal Organic Frameworks as Efficient Adsorbents for Drugs from Wastewater. Mater. Today Commun. 2022, 31, 103514. https://doi.org/10.1016/j.mtcomm.2022.103514.Suche in Google Scholar

37. Djošić, M. S.; Mišković-Stanković, V. B.; Janaćković, Dj.T.; Kačarević-Popović, Z. M.; Petrović, R. D. Electrophoretic Deposition and Characterization of Boehmite Coatings on Titanium Substrate. Colloids Surf. A: Physicochem. Eng. Asp. 2006, 274, 185–191. https://doi.org/10.1016/j.colsurfa.2005.08.048.Suche in Google Scholar

38. Samain, L.; Jaworski, A.; Edén, M.; Ladd, D. M.; Seo, D.-K.; Javier Garcia-Garcia, F.; Häussermann, U. Structural Analysis of Highly Porous γ-Al2O3. J. Solid State Chem. 2014, 217, 1–8. https://doi.org/10.1016/j.jssc.2014.05.004.Suche in Google Scholar

39. Segal, F. M.; Correa, M. F.; Bacani, R.; Castanheira, B.; Politi, M. J.; Brochsztain, S.; Triboni, E. R. A Novel Synthesis Route of Mesoporous γ-Alumina from Polyoxohydroxide Aluminum. Mater. Res. 2018, 21. https://doi.org/10.1590/1980-5373-mr-2017-0674.Suche in Google Scholar

40. Ma, X.; Feng, X.; Guo, J.; Cao, H.; Suo, X.; Sun, H.; Zheng, M. Catalytic Oxidation of 1,2-Dichlorobenzene over Ca-Doped FeOx Hollow Microspheres. Appl. Catal. B: Environ. 2014, 147, 666–676. https://doi.org/10.1016/j.apcatb.2013.10.003.Suche in Google Scholar

41. Tsyganenko, A. A.; Mardilovich, P. P. Structure of Alumina Surfaces. Faraday Trans. 1996, 92, 4843. https://doi.org/10.1039/ft9969204843.Suche in Google Scholar

42. Romero Toledo, R.; Ruiz Santoyo, V.; Moncada Sánchez, C. D.; Martínes Rosales, M. Effect of Aluminum Precursor on Physicochemical Properties of Al2O3 by Hydrolysis/Precipitation Method. Nova Scientia 2018, 10, 83–99. https://doi.org/10.21640/ns.v10i20.1217.Suche in Google Scholar

43. O’Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Santa Ana, M. A.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Vanadate Conformation Variations in Vanadium Pentoxide Nanostructures. J. Electrochem. Soc. 2007, 154, K29. https://doi.org/10.1149/1.2746556.Suche in Google Scholar

44. Mkhondwane, S. T.; Pullabhotla, V. S. R. Highly Selective pH-Dependent Ozonation of Cyclohexane over Mn/γ-Al2O3 Catalysts at Ambient Reaction Conditions. Catalysts 2019, 9, 958. https://doi.org/10.3390/catal9110958.Suche in Google Scholar

45. Ronduda, H.; Zybert, M.; Patkowski, W.; Sobczak, K.; Moszyński, D.; Albrecht, A.; Sarnecki, A.; Raróg-Pilecka, W. On the Effect of Metal Loading on the Performance of Co Catalysts Supported on Mixed MgO–La2O3 Oxides for Ammonia Synthesis. R. Soc. Chem. Adv. 2022, 12, 33876–33888. https://doi.org/10.1039/D2RA06053A.Suche in Google Scholar PubMed PubMed Central

46. Aghbolaghy, M.; Ghavami, M.; Soltan, J.; Chen, N. Effect of Active Metal Loading on Catalyst Structure and Performance in Room Temperature Oxidation of Acetone by Ozone. J. Ind. Eng. Chem. 2019, 77, 118–127. https://doi.org/10.1016/j.jiec.2019.04.026.Suche in Google Scholar

47. Chetty, E. C.; Maddila, S.; Southway, C.; Jonnalagadda, S. B. Ozone Initiated Ni/Metal Oxide Catalyzed Conversion of 1,2-Dichlorobenzene to Mucochloric Acid in Aqueous Solutions. Ind. Eng. Chem. Res. 2012, 51, 2864–2873. https://doi.org/10.1021/ie202570e.Suche in Google Scholar

48. Chetty, E. C.; Dasireddy, V. B.; Maddila, S.; Jonnalagadda, S. B. Efficient Conversion of 1,2-Dichlorobenzene to Mucochloric Acid with Ozonation Catalyzed by V2O5 Loaded Metal Oxides. Appl. Catal. B: Environ. 2012, 117–118, 18–28. https://doi.org/10.1016/j.apcatb.2012.01.004.Suche in Google Scholar

49. Song, Y.; Liu, H.; Liu, S.; He, D. Partial Oxidation of Methane to Syngas over Ni/Al2O3 Catalysts Prepared by a Modified Sol−Gel Method. Energy Fuels 2009, 23, 1925–1930. https://doi.org/10.1021/ef800954a.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0342).


Received: 2024-11-27
Accepted: 2025-01-17
Published Online: 2025-02-20
Published in Print: 2025-05-26

© 2025 IUPAC & De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Research Articles
  4. Efficient degradation of 1,2-dichlorobenzene using heterogeneous catalytic ozonation over metal loaded gamma alumina catalysts
  5. Effect of chemical modification using glyoxylic acid on the stability of α-amylase from Aspergillus fumigatus
  6. A new, innovative, simple method to determine the concentration of phosphate and sulphate ions in an aqueous extract of plants using conductometric titration
  7. Metalloporphyrin-mediated oxidative degradation of risperidone under mild conditions: an LC-MS/MS study
  8. Synthesis of novel ternary herbicide-layered double hydroxide hybrids via the ion exchange method
  9. Water Quality Index and the quality of freshwater resource uMhlathuze river, Kwazulu-Natal, South Africa: A Review
  10. Experimental ‘in-Vitro’ investigation on bio-chemical constituents, radical scavenging activity, and reducing power assay of cow urine
  11. Enhanced biofilm disruption in ESKAPE pathogens through synergistic activity of EPS degrading enzymes
  12. Green synthesis of silver nanoparticles using a bioflocculant produced by a kombucha tea yeast isolate for antimicrobial and biosafety testing
  13. Characterization of metabolite compounds from endophytic fungi associated with white turi plant (Sesbania grandiflora) and their antibacterial activity
  14. Enhanced photocatalytic degradation of methylene blue dye using TiO2 nanoparticles obtained via chemical and green synthesis: a comparative analysis
  15. Characterization of electrocatalysts for the oxygen evolution reaction OER: a bi-metal study IrM oxides (Ru, and Au)
  16. Development of a second harmonic generation microscope optimized for biomaterial studies
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0342/html
Button zum nach oben scrollen