Abstract
It is widely recognized that electrostatics plays a central role in the intermolecular interactions in condensed phases, as evidenced by the “electrostatics + Lennard-Jones” form of the potential functions that are commonly used in classical molecular dynamics simulations. Then, do we understand all about electrostatics in condensed phases? In this review, recent theoretical advances in relation to this topic will be discussed: (1) vibrational spectroscopic probing of the electrostatics in condensed phases, and (2) some phenomena affected by deviation from the scheme of isotropic fixed atomic partial charges, i.e., anisotropy and intermolecular transfer of electron distributions. A theoretical basis for better understanding on them and some theoretical models for practical calculations will be shown with some typical example cases of hydrogen- and halogen-bonded systems.
Funding source: JSPS KAKENHI
Award Identifier / Grant number: JP22H04534
Award Identifier / Grant number: JP22K05020
-
Research funding: This study was supported by JSPS KAKENHI Grant Numbers JP22H04534 and JP22K05020.
References
[1] C. R. Baiz, B. Błasiak, J. Bredenbeck, M. Cho, J.-H. Choi, S. A. Corcelli, A. G. Dijkstra, C.-J. Feng, S. Garrett-Roe, N.-H. Ge, M. W. D. Hanson-Heine, J. D. Hirst, T. L. C. Jansen, K. Kwac, K. J. Kubarych, C. H. Londergan, H. Maekawa, M. Reppert, S. Saito, S. Roy, J. L. Skinner, G. Stock, J. E. Straub, M. C. Thielges, K. Tominaga, A. Tokmakoff, H. Torii, L. Wang, L. J. Webb, M. T. Zanni. Chem. Rev. 120, 7152 (2020), https://doi.org/10.1021/acs.chemrev.9b00813.Suche in Google Scholar PubMed PubMed Central
[2] H. Torii. Atoms, Molecules and Clusters in Electric Fields. Theoretical Approaches to the Calculation of Electric Polarizability, G. Maroulis (Ed.), pp. 179–214, Imperial College Press, London (2006).10.1142/9781860948862_0006Suche in Google Scholar
[3] H. Torii, R. Ukawa. J. Phys. Chem. B 125, 1468 (2021), https://doi.org/10.1021/acs.jpcb.0c11461.Suche in Google Scholar PubMed
[4] M. Hirose, H. Torii. J. Mol. Liq. 362, 119714 (2022), https://doi.org/10.1016/j.molliq.2022.119714.Suche in Google Scholar
[5] H. Torii. Metal Ions and Complexes in Solution, Coordination Chemistry Fundamentals Series No. 2, T. Yamaguchi, I. Persson (Eds.), pp. 62–77, Royal Society of Chemistry, London (2023).10.1039/BK9781839169601-00062Suche in Google Scholar
[6] M. Cho. J. Chem. Phys. 130, 094505 (2009), https://doi.org/10.1063/1.3079609.Suche in Google Scholar PubMed
[7] S. D. Fried, S. G. Boxer. Acc. Chem. Res. 48, 998 (2015), https://doi.org/10.1021/ar500464j.Suche in Google Scholar PubMed PubMed Central
[8] H. Torii. J. Phys. Chem. Lett. 6, 727 (2015), https://doi.org/10.1021/acs.jpclett.5b00004.Suche in Google Scholar PubMed
[9] H. Torii. J. Phys. Chem. A 120, 7137 (2016), https://doi.org/10.1021/acs.jpca.6b06607.Suche in Google Scholar PubMed
[10] H. Torii. J. Phys. Chem. B 114, 13403 (2010), https://doi.org/10.1021/jp106952q.Suche in Google Scholar PubMed
[11] H. Torii. J. Phys. Chem. B 115, 6636 (2011), https://doi.org/10.1021/jp201695b.Suche in Google Scholar PubMed
[12] H. Torii. J. Phys. Chem. B 122, 154 (2018), https://doi.org/10.1021/acs.jpcb.7b10791.Suche in Google Scholar PubMed
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT (2013).Suche in Google Scholar
[14] Y. Kameda, M. Kowaguchi, K. Tsutsui, Y. Amo, T. Usuki, K. Ikeda, T. Otomo. J. Phys. Chem. B 125, 11285 (2021), https://doi.org/10.1021/acs.jpcb.1c07527.Suche in Google Scholar PubMed
[15] Y. Kameda, Y. Amo, T. Usuki, K. Ikeda, T. Honda, T. Otomo. J. Phys. Chem. B 127, 7758 (2023), https://doi.org/10.1021/acs.jpcb.3c05090.Suche in Google Scholar PubMed
[16] S. Ham, M. Cho. J. Chem. Phys. 118, 6915 (2003), https://doi.org/10.1063/1.1559681.Suche in Google Scholar
[17] K. Kwac, M. Cho. J. Chem. Phys. 119, 2247 (2003), https://doi.org/10.1063/1.1580807.Suche in Google Scholar
[18] P. Bouř, T. A. Keiderling. J. Chem. Phys. 119, 11253 (2003), https://doi.org/10.1063/1.1622384.Suche in Google Scholar
[19] T. M. Watson, J. D. Hirst. Mol. Phys. 103, 1531 (2005), https://doi.org/10.1080/00268970500052387.Suche in Google Scholar
[20] J. R. Schmidt, S. A. Corcelli, J. L. Skinner. J. Chem. Phys. 121, 8887 (2004), https://doi.org/10.1063/1.1791632.Suche in Google Scholar PubMed
[21] L. Wang, C. T. Middleton, M. T. Zanni, J. L. Skinner. J. Phys. Chem. B 115, 3713 (2011), https://doi.org/10.1021/jp200745r.Suche in Google Scholar PubMed PubMed Central
[22] T. l. C. Jansen, J. Knoester. J. Chem. Phys. 124, 044502 (2006), https://doi.org/10.1063/1.2148409.Suche in Google Scholar PubMed
[23] M. Reppert, A. Tokmakoff. J. Chem. Phys. 138, 134116 (2013), https://doi.org/10.1063/1.4798938.Suche in Google Scholar PubMed PubMed Central
[24] M. Reppert, A. Tokmakoff. J. Chem. Phys. 143, 061102 (2015), https://doi.org/10.1063/1.4928637.Suche in Google Scholar PubMed
[25] K. Chelius, J. H. Wat, A. Phadkule, M. Reppert. J. Chem. Phys. 155, 195101 (2021), https://doi.org/10.1063/5.0064518.Suche in Google Scholar PubMed
[26] K. Cai, F. Du, X. Zheng, J. Liu, R. Zheng, J. Zhao, J. Wang. J. Phys. Chem. B 120, 1069 (2016), https://doi.org/10.1021/acs.jpcb.5b11643.Suche in Google Scholar PubMed
[27] H. Torii. J. Mol. Struct. 735/736, 21 (2005), https://doi.org/10.1016/j.molstruc.2004.10.082.Suche in Google Scholar
[28] B. M. Auer, J. L. Skinner. J. Chem. Phys. 128, 224511 (2008), https://doi.org/10.1063/1.2925258.Suche in Google Scholar PubMed
[29] S. M. Gruenbaum, C. J. Tainter, L. Shi, Y. Ni, J. L. Skinner. J. Chem. Theory Comput. 9, 3109 (2013), https://doi.org/10.1021/ct400292q.Suche in Google Scholar PubMed
[30] J. D. Eaves, A. Tokmakoff, P. L. Geissler. J. Phys. Chem. A 109, 9424 (2005), https://doi.org/10.1021/jp051364m.Suche in Google Scholar PubMed
[31] F. Paesani, S. S. Xantheas, G. A. Voth. J. Phys. Chem. B 113, 13118 (2009), https://doi.org/10.1021/jp907648y.Suche in Google Scholar PubMed
[32] J.-H. Choi, M. Cho. J. Chem. Phys. 138, 174108 (2013), https://doi.org/10.1063/1.4802991.Suche in Google Scholar PubMed
[33] H. Torii. J. Phys. Chem. A 110, 9469 (2006), https://doi.org/10.1021/jp062033s.Suche in Google Scholar PubMed
[34] Y. Kitamura, H. Torii. J. Raman Spectrosc. 53, 1785 (2022), https://doi.org/10.1002/jrs.6356.Suche in Google Scholar
[35] J.-H. Choi, K.-I. Oh, H. Lee, C. Lee, M. Cho. J. Chem. Phys. 128, 134506 (2008), https://doi.org/10.1063/1.2904558.Suche in Google Scholar PubMed
[36] H. Lee, J.-H. Choi, M. Cho. Phys. Chem. Chem. Phys. 12, 12658 (2010), https://doi.org/10.1039/c0cp00214c.Suche in Google Scholar PubMed
[37] H. Torii, S. Noge. Phys. Chem. Chem. Phys. 18, 10081 (2016), https://doi.org/10.1039/c5cp08008h.Suche in Google Scholar PubMed
[38] H. Torii. J. Mol. Liq. 284, 773 (2019), https://doi.org/10.1016/j.molliq.2019.04.008.Suche in Google Scholar
[39] Z. Ganim, A. Tokmakoff. Biophys. J. 91, 2636 (2006), https://doi.org/10.1529/biophysj.106.088070.Suche in Google Scholar PubMed PubMed Central
[40] C. M. Baronio, A. Barth. Phys. Chem. Chem. Phys. 26, 1166 (2024), https://doi.org/10.1039/d3cp02018e.Suche in Google Scholar PubMed
[41] A. T. Fafarman, P. A. Sigala, D. Herschlag, S. G. Boxer. J. Am. Chem. Soc. 132, 12811 (2010), https://doi.org/10.1021/ja104573b.Suche in Google Scholar PubMed PubMed Central
[42] J. Xu, G. Deng, Y.-T. Wang, H.-Y. Guo, P. Kalhor, Z.-W. Yu. J. Phys. Chem. Lett. 11, 1007 (2020), https://doi.org/10.1021/acs.jpclett.9b03804.Suche in Google Scholar PubMed
[43] H. Torii, K. Watanabe. J. Phys. Chem. B 127, 6507 (2023), https://doi.org/10.1021/acs.jpcb.3c01977.Suche in Google Scholar PubMed
[44] M. R. Waterland, D. Stockwell, A. M. Kelley. J. Chem. Phys. 114, 6249 (2001), https://doi.org/10.1063/1.1355657.Suche in Google Scholar
[45] W. W. Rudolph, D. Fischer, G. Irmer. Appl. Spectrosc. 75, 395 (2021), https://doi.org/10.1177/0003702820986861.Suche in Google Scholar PubMed
[46] E. B. WilsonJr., J. C. Decius, P. C. Cross. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover, New York (1980).Suche in Google Scholar
[47] L. Pauling. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, 3rd ed. (1960).Suche in Google Scholar
[48] C. M. Breneman, K. B. Wiberg. J. Comput. Chem. 11, 361 (1990), https://doi.org/10.1002/jcc.540110311.Suche in Google Scholar
[49] J. R. Schmidt, S. A. Corcelli, J. L. Skinner. J. Chem. Phys. 123, 044513 (2005), https://doi.org/10.1063/1.1961472.Suche in Google Scholar PubMed
[50] S. A. Corcelli, J. L. Skinner. J. Phys. Chem. A 109, 6154 (2005), https://doi.org/10.1021/jp0506540.Suche in Google Scholar PubMed
[51] H. Torii. J. Chem. Theory Comput. 10, 1219 (2014), https://doi.org/10.1021/ct4011147.Suche in Google Scholar PubMed
[52] H. Torii. Chem. Phys. 512, 165 (2018), https://doi.org/10.1016/j.chemphys.2017.11.018.Suche in Google Scholar
[53] H. Torii. Phys. Chem. Chem. Phys. 20, 3029 (2018), https://doi.org/10.1039/c7cp02644g.Suche in Google Scholar PubMed
[54] H. Torii. J. Mol. Liq. 390, 123111 (2023), https://doi.org/10.1016/j.molliq.2023.123111.Suche in Google Scholar
[55] H. Torii. J. Phys. Chem. A 117, 2044 (2013), https://doi.org/10.1021/jp4013015.Suche in Google Scholar PubMed
[56] R. Vácha, O. Marsalek, A. P. Willard, D. Jan Bonthuis, R. R. Netz, P. Jungwirth. J. Phys. Chem. Lett. 3, 107 (2012), https://doi.org/10.1021/jz2014852.Suche in Google Scholar
[57] D. Ben-Amotz. J. Phys. Chem. Lett. 2, 1216 (2011), https://doi.org/10.1021/jz2002875.Suche in Google Scholar PubMed
[58] I. S. Ufimtsev, N. Luehr, T. J. Martinez. J. Phys. Chem. Lett. 2, 1789 (2011), https://doi.org/10.1021/jz200697c.Suche in Google Scholar
[59] A. J. Lee, S. W. Rick. J. Chem. Phys. 134, 184507 (2011), https://doi.org/10.1063/1.3589419.Suche in Google Scholar PubMed
[60] Z. Zhao, D. M. Rogers, T. L. Beck. J. Chem. Phys. 132, 014502 (2010), https://doi.org/10.1063/1.3283900.Suche in Google Scholar PubMed
[61] R. Z. Khaliullin, A. T. Bell, M. Head-Gordon. Chem. Eur. J. 15, 851 (2009), https://doi.org/10.1002/chem.200802107.Suche in Google Scholar PubMed
[62] I. Bakó, I. Mayer. J. Phys. Chem. A 120, 4408 (2016), https://doi.org/10.1021/acs.jpca.6b03187.Suche in Google Scholar PubMed
[63] C. Schran, O. Marsalek, T. E. Markland. Chem. Phys. Lett. 678, 289 (2017), https://doi.org/10.1016/j.cplett.2017.04.034.Suche in Google Scholar
[64] B. Han, C. M. Isborn, L. Shi. J. Chem. Theory Comput. 17, 889 (2021), https://doi.org/10.1021/acs.jctc.0c01102.Suche in Google Scholar PubMed
[65] M. Śmiechowski, C. Schran, H. Forbert, D. Marx. Phys. Rev. Lett. 116, 027801 (2016), https://doi.org/10.1103/physrevlett.116.027801.Suche in Google Scholar PubMed
[66] D. Sidler, M. Meuwly, P. Hamm. J. Chem. Phys. 148, 244504 (2018), https://doi.org/10.1063/1.5037062.Suche in Google Scholar PubMed
[67] P. Hamm, J. Savolainen. J. Chem. Phys. 136, 094516 (2012), https://doi.org/10.1063/1.3691601.Suche in Google Scholar PubMed
[68] J. E. Bertie, Z. Lan. Appl. Spectrosc. 50, 1047 (1996), https://doi.org/10.1366/0003702963905385.Suche in Google Scholar
[69] Y. Maréchal. J. Mol. Struct. 1004, 146 (2011), https://doi.org/10.1016/j.molstruc.2011.07.054.Suche in Google Scholar
[70] K. Itoh, T. Shimanouchi. J. Mol. Spectrosc. 42, 86 (1972), https://doi.org/10.1016/0022-2852(72)90146-4.Suche in Google Scholar
[71] J. E. Bertie, S. L. Zhang, H. H. Eysel, S. Baluja, M. K. Ahmed. Appl. Spectrosc. 47, 1100 (1993), https://doi.org/10.1366/0003702934067973.Suche in Google Scholar
[72] G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen. Pure Appl. Chem. 85, 1711 (2013), https://doi.org/10.1351/pac-rec-12-05-10.Suche in Google Scholar
[73] P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati. Acc. Chem. Res. 38, 386 (2005), https://doi.org/10.1021/ar0400995.Suche in Google Scholar PubMed
[74] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo. Chem. Rev. 116, 2478 (2016), https://doi.org/10.1021/acs.chemrev.5b00484.Suche in Google Scholar
[75] L. P. Wolters, P. Schyman, M. J. Pavan, W. L. Jorgensen, F. M. Bickelhaupt, S. Kozuch. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 523 (2014), https://doi.org/10.1002/wcms.1189.Suche in Google Scholar
[76] P. Politzer, J. S. Murray, T. Clark. Phys. Chem. Chem. Phys. 12, 7748 (2010), https://doi.org/10.1039/c004189k.Suche in Google Scholar
[77] R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler. J. Med. Chem. 56, 1363 (2013), https://doi.org/10.1021/jm3012068.Suche in Google Scholar
[78] D. Bulfield, S. M. Huber. Chem. Eur. J. 22, 14434 (2016), https://doi.org/10.1002/chem.201601844.Suche in Google Scholar
[79] A. C. Legon. Angew. Chem., Int. Ed. 38, 2686 (1999), https://doi.org/10.1002/(sici)1521-3773(19990917)38:18<2686::aid-anie2686>3.0.co;2-6.10.1002/(SICI)1521-3773(19990917)38:18<2686::AID-ANIE2686>3.0.CO;2-6Suche in Google Scholar
[80] P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho. Proc. Natl. Acad. Sci. U. S. A. 101, 16789 (2004), https://doi.org/10.1073/pnas.0407607101.Suche in Google Scholar
[81] Y. Lu, Y. Wang, W. Zhu. Phys. Chem. Chem. Phys. 12, 4543 (2010), https://doi.org/10.1039/b926326h.Suche in Google Scholar
[82] A. Mukherjee, S. Tothadi, G. R. Desiraju. Acc. Chem. Res. 47, 2514 (2014), https://doi.org/10.1021/ar5001555.Suche in Google Scholar
[83] L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer. Chem. Rev. 115, 7118 (2015), https://doi.org/10.1021/cr500674c.Suche in Google Scholar
[84] P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo. Angew. Chem., Int. Ed. 47, 6114 (2008), https://doi.org/10.1002/anie.200800128.Suche in Google Scholar PubMed
[85] H. Torii. J. Chem. Phys. 119, 2192 (2003), https://doi.org/10.1063/1.1585016.Suche in Google Scholar
[86] H. Torii, M. Yoshida. J. Comput. Chem. 31, 107 (2010), https://doi.org/10.1002/jcc.21302.Suche in Google Scholar PubMed
[87] H. Torii. AIP Conf. Proc. 1504, 228 (2012), https://doi.org/10.1063/1.4771718.Suche in Google Scholar
[88] K. Saito, R. Izumi, H. Torii. J. Chem. Phys. 153, 174302 (2020), https://doi.org/10.1063/5.0021615.Suche in Google Scholar PubMed
[89] H. Torii, A. Kimura, T. Sakai. Phys. Chem. Chem. Phys. 24, 17951 (2022), https://doi.org/10.1039/d2cp02845j.Suche in Google Scholar PubMed
[90] T. Sakai, H. Torii. Chem.–Asian J. 18, e202201196 (2023), https://doi.org/10.1002/asia.202201196.Suche in Google Scholar PubMed
[91] K. Saito, H. Torii. J. Phys. Chem. B 125, 11742 (2021), https://doi.org/10.1021/acs.jpcb.1c07211.Suche in Google Scholar PubMed
[92] H. J. Jahromi, K. Eskandari. Struct. Chem. 24, 1281 (2013), https://doi.org/10.1007/s11224-012-0156-2.Suche in Google Scholar
[93] S. Cardamone, T. J. Hughes, P. L. A. Popelier. Phys. Chem. Chem. Phys. 16, 10367 (2014), https://doi.org/10.1039/c3cp54829e.Suche in Google Scholar PubMed
[94] S. Tsuzuki. AIP Conf. Proc. 1702, 090044 (2015), https://doi.org/10.1063/1.4938852.Suche in Google Scholar
[95] M. A. A. Ibrahim. J. Comput. Chem. 32, 2564 (2011), https://doi.org/10.1002/jcc.21836.Suche in Google Scholar PubMed
[96] S. Gutiérrez, F.-Y. Lin, K. Vanommeslaeghe, J. A. Lemkul, K. A. Armacost, C. L. BrooksIII, A. D. MacKerellJr.. Bioorg. Med. Chem. 24, 4812 (2016), https://doi.org/10.1016/j.bmc.2016.06.034.Suche in Google Scholar PubMed PubMed Central
[97] W. L. Jorgensen, P. Schyman. J. Chem. Theory Comput. 8, 3895 (2012), https://doi.org/10.1021/ct300180w.Suche in Google Scholar PubMed PubMed Central
[98] M. Kolář, P. Hobza. J. Chem. Theory Comput. 8, 1325 (2012), https://doi.org/10.1021/ct2008389.Suche in Google Scholar PubMed
[99] R. Nunes, D. Vila-Viçosa, P. J. Costa. J. Chem. Theory Comput. 15, 4241 (2019), https://doi.org/10.1021/acs.jctc.9b00106.Suche in Google Scholar PubMed
[100] S. Tsuzuki, T. Uchimaru, A. Wakisaka, T. Ono, T. Sonoda. Phys. Chem. Chem. Phys. 15, 6088 (2013), https://doi.org/10.1039/c3cp43693d.Suche in Google Scholar PubMed
[101] F. Adasme-Carreño, C. Muñoz-Gutierrez, J. H. Alzate-Morales. RSC Adv. 6, 61837 (2016), https://doi.org/10.1039/c6ra14837a.Suche in Google Scholar
[102] K. E. Riley, J. S. Murray, J. Fanfrlík, J. Řezáč, R. J. Solá, M. C. Concha, F. M. Ramos, P. Politzer. J. Mol. Model. 17, 3309 (2011), https://doi.org/10.1007/s00894-011-1015-6.Suche in Google Scholar PubMed
[103] M. D. Esrafili, M. Solimannejad. J. Mol. Model. 19, 3767 (2013), https://doi.org/10.1007/s00894-013-1912-y.Suche in Google Scholar PubMed
[104] S. Scheiner, S. Hunter. ChemPhysChem 23, e202200011 (2022), https://doi.org/10.1002/cphc.202200122.Suche in Google Scholar
[105] M. V. Chernysheva, M. Bulatova, X. Ding, M. Haukka. Cryst. Growth Des. 20, 7197 (2020), https://doi.org/10.1021/acs.cgd.0c00866.Suche in Google Scholar
[106] A.-C. C. Carlsson, M. R. Scholfield, R. K. Rowe, M. C. Ford, A. T. Alexander, R. A. Mehl, P. S. Ho. Biochemistry 57, 4135 (2018), https://doi.org/10.1021/acs.biochem.8b00603.Suche in Google Scholar PubMed PubMed Central
[107] A. M. S. Riel, R. K. Rowe, E. N. Ho, A.-C. C. Carlsson, A. K. Rappé, O. B. Berryman, P. S. Ho. Acc. Chem. Res. 52, 2870 (2019), https://doi.org/10.1021/acs.accounts.9b00189.Suche in Google Scholar PubMed PubMed Central
[108] S. E. McLain, C. J. Benmore, J. E. Siewenie, J. Urquidi, J. F. C. Turner. Angew. Chem., Int. Ed. 43, 1952 (2004), https://doi.org/10.1002/anie.200353289.Suche in Google Scholar PubMed
[109] M. W. Johnson, E. Sándor, E. Arzi. Acta Crystallogr. B 31, 1998 (1975), https://doi.org/10.1107/s0567740875006711.Suche in Google Scholar
[110] U. Röthlisberger, M. Parrinello. J. Chem. Phys. 106, 4658 (1997), https://doi.org/10.1063/1.473988.Suche in Google Scholar
[111] E. A. Orabi, J. D. Faraldo-Gómez. J. Chem. Theory Comput. 16, 5105 (2020), https://doi.org/10.1021/acs.jctc.0c00247.Suche in Google Scholar PubMed PubMed Central
[112] M. L. Klein, I. R. McDonald. J. Chem. Phys. 71, 298 (1979), https://doi.org/10.1063/1.438071.Suche in Google Scholar
[113] M. E. Cournoyer, W. L. Jorgensen. Mol. Phys. 51, 119 (1984), https://doi.org/10.1080/00268978400100081.Suche in Google Scholar
[114] L. Pártay, P. Jedlovszky, R. Vallauri. J. Chem. Phys. 124, 184504 (2006), https://doi.org/10.1063/1.2192771.Suche in Google Scholar PubMed
[115] R. G. Della Valle, D. Gazzillo. Phys. Rev. B 59, 13699 (1999), https://doi.org/10.1103/physrevb.59.13699.Suche in Google Scholar
[116] Y. Ikemoto, Y. Harada, M. Tanaka, S. Nishimura, D. Murakami, N. Kurahashi, T. Moriwaki, K. Yamazoe, H. Washizu, Y. Ishii, H. Torii. J. Phys. Chem. B 126, 4143 (2022), https://doi.org/10.1021/acs.jpcb.2c01702.Suche in Google Scholar PubMed PubMed Central
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches