Abstract
Silver and lanthanide (Tm3+, Yb3+) doped oxyfluoride glasses have been prepared by melt-quenching method. The absorption of the glasses was measured in the range from 350 to 550 nm revealing the absorption edges of Ag nanoclusters and Tm3+ transition. The photoluminescence spectra of the glasses were detected in the range from 400 to 1100 nm under excitation in the range from 300 to 500 nm. The photoluminescence excitation spectra showed that Ag nanoclusters and Tm3+ ions can effectively harvest energy in UV-range and convert to visible and infrared (through emission by Yb3+ ions) ranges making the glasses perspective as white light emitters and solar spectrum downconverters.
Funding source: KU Leuven
Award Identifier / Grant number: PDM/16/108
Funding source: Vlaamse regering
Award Identifier / Grant number: Methusalem
Acknowledgments
This work received the financial support from Methusalem Funding of the Flemish Government (experimental part) and KU Leuven Post-Doctoral Mandate PDM/16/108 (data processing and analysis). The authors acknowledge some informational support from the Royal Society of Chemistry (England).
References
[1] M. Vasiliev, K. Alameh, M. Nur-E-Alam. Appl. Sci. 8, 849 (2018), https://doi.org/10.3390/app8060849.Suche in Google Scholar
[2] M. Xia, J. Luo, C. Chen, H. Liu, J. Tang. Adv. Opt. Mater. 7, 1900851 (2019), https://doi.org/10.1002/adom.201900851.Suche in Google Scholar
[3] E. Erol, N. Vahedigharehchopogh, O. Kıbrıslı, M. Ç. Ersundu, A. E. Ersundu. J. Phys.: Condens. Matter 33, 483001 (2021), https://doi.org/10.1088/1361-648X/ac22d9.Suche in Google Scholar PubMed
[4] C. A. T. Laia, A. Ruivo, In Fluorescence in Industry, B. Pedras (Ed.), pp. 365–388, Springer International Publishing, Cham (2019).10.1007/4243_2019_12Suche in Google Scholar
[5] S. Li, Y. Pan, W. Wang, Y. Li. J. Chem. Eng. 434, 134593 (2022), https://doi.org/10.1016/j.cej.2022.134593.Suche in Google Scholar
[6] A. S. Kuznetsov, A. Nikitin, V. K. Tikhomirov, M.V. Shestakov, V.V. Moshchalkov. Appl. Phys. Lett. 102, 161916 (2013), https://doi.org/10.1063/1.4803448.Suche in Google Scholar
[7] V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, R. M. Almeida. Europhys. Lett. 64, 529 (2003), https://doi.org/10.1209/epl/i2003-00106-9.Suche in Google Scholar
[8] W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, X. Chen. Phys. Chem. Chem. Phys. 14, 6974 (2012), https://doi.org/10.1039/C2CP24044K.Suche in Google Scholar PubMed
[9] G. Nemova, R. Kashyap. J. Opt. Soc. Am. B 29, 3034 (2012), https://doi.org/10.1364/JOSAB.29.003034.Suche in Google Scholar
[10] E.S. de Lima Filho, K. V. Krishnaiah, Y. Ledemi, Y.-J. Yu, Y. Messaddeq, G. Nemova, R. Kashyap. Opt. Express 23, 4630 (2015), https://doi.org/10.1364/OE.23.004630.Suche in Google Scholar PubMed
[11] K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. De Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, R. Kashyap. Opt. Mater. Express 7, 1980 (2017), https://doi.org/10.1364/OME.7.001980.Suche in Google Scholar
[12] M.V. Shestakov, X.M. Chen, V. Kaydashev, W. Baeckelant, V.K. Tikhomirov, J. Vanacken, J. Hofkens, V.V. Moshchalkov. Opt. Mater. Express 4, 1227 (2014), https://doi.org/10.1364/OME.4.001227.Suche in Google Scholar
[13] V.K. Tikhomirov, V.D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, V.V. Moshchalkov. Opt. Express 18, 22032 (2010), https://doi.org/10.1364/OE.18.022032.Suche in Google Scholar PubMed
[14] H. El Hamzaoui, B. Capoen, I. Razdobreev, M. Bouazaoui. Mater. Res. Express 4, 076201 (2017), https://doi.org/10.1088/2053-1591/aa7ac6.Suche in Google Scholar
[15] E.M. Sgibnev, N.V. Nikonorov, A.I. Ignat’ev. Opt. Spectrosc. 122, 133 (2017), https://doi.org/10.1134/S0030400X1701026X.Suche in Google Scholar
[16] Y. Shi, S. Ye, J. Yu, H. Liao, J. Liu, D. Wang. Opt. Express 27, 38159 (2019), https://doi.org/10.1364/OE.380860.Suche in Google Scholar PubMed
[17] I.I. Kindrat, B.V. Padlyak, B. Kukliński, A. Drzewiecki, V.T. Adamiv. J. Lumin. 213, 290 (2019), https://doi.org/10.1016/j.jlumin.2019.05.045.Suche in Google Scholar
[18] C. Yu, Z. Yang, J. Zhao, J. Zhu, A. Huang, J. Qiu, Z. Song, D. Zhou. J. Alloys Compd. 748, 717 (2018), https://doi.org/10.1016/j.jallcom.2018.03.191.Suche in Google Scholar
[19] M.V. Shestakov, M. Meledina, S. Turner, V.K. Tikhomirov, N. Verellen, V.D. Rodríguez, J.J. Velázquez, G. Van Tendeloo, V.V. Moshchalkov. J. Appl. Phys. 114, 073102 (2013), https://doi.org/10.1063/1.4818830.Suche in Google Scholar
[20] V.K. Tikhomirov, T. Vosch, E. Fron, V.D. Rodríguez, J.J. Velázquez, D. Kirilenko, G. Van Tendeloo, J. Hofkens, M. Van Der Auweraer, V.V. Moshchalkov. RSC Adv. 2, 1496 (2012), https://doi.org/10.1039/C1RA01026C.Suche in Google Scholar
[21] W. Van Bommel. Interior Lighting: Fundamentals, Technology and Application, pp. 25–31, Springer International Publishing, Cham (2019).10.1007/978-3-030-17195-7_2Suche in Google Scholar
[22] C. Li, G. Cui, M. Melgosa, X. Ruan, Y. Zhang, L. Ma, K. Xiao, M.R. Luo. Opt. Express 24, 14066 (2016), https://doi.org/10.1364/OE.24.014066.Suche in Google Scholar PubMed
[23] N.T. Cuong, V.K. Tikhomirov, L.F. Chibotaru, A. Stesmans, V.D. Rodríguez, M.T. Nguyen, V.V. Moshchalkov. J. Chem. Phys. 136, 174108 (2012), https://doi.org/10.1063/1.4707709.Suche in Google Scholar PubMed
[24] J.J. Velázquez, V.K. Tikhomirov, L.F. Chibotaru, N.T. Cuong, A.S. Kuznetsov, V.D. Rodríguez, M.T. Nguyen, V.V. Moshchalkov. Opt. Express 20, 13582 (2012), https://doi.org/10.1364/OE.20.013582.Suche in Google Scholar PubMed
[25] A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov. Mater. Lett. 92, 4 (2013), https://doi.org/10.1063/1.4803448.Suche in Google Scholar
[26] A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov. Opt. Express 20, 21576 (2012), https://doi.org/10.1364/OE.20.021576.Suche in Google Scholar PubMed
[27] H. Sahoo. J. Photochem. Photobiol. C: Photochem. Rev. 12, 20 (2011), https://doi.org/10.1016/j.jphotochemrev.2011.05.001.Suche in Google Scholar
[28] E. Lerner, T. Cordes, A. Ingargiola, Y. Alhadid, S. Chung, X. Michalet, S. Weiss. Science 359, eaan1133 (2018), https://doi.org/10.1126/science.aan1133.Suche in Google Scholar PubMed PubMed Central
[29] Y. Wang, X. Liu, Q. Wang, M. Quick, S. A. Kovalenko, Q. Chen, N. Koch, N. Pinna. Angew. Chem. 132, 7822 (2020), https://doi.org/10.1002/ange.201915074.Suche in Google Scholar
[30] S. Comby, F. Gumy, J.-C. G. Bünzli, T. Saraidarov, R. Reisfeld. Chem. Phys. Lett. 432, 128 (2006), https://doi.org/10.1016/j.cplett.2006.10.046.Suche in Google Scholar
[31] K.V. Krishnaiah, E. Soares De Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, R. Kashyap. Sci. Rep. 6, 21905 (2016), https://doi.org/10.1038/srep21905.Suche in Google Scholar PubMed PubMed Central
[32] C. Wei, D. Xu, Z. Yang, Y. Jia, X. Li, J. Sun. RSC Adv. 9, 27817 (2019), https://doi.org/10.1039/C9RA04727A.Suche in Google Scholar
[33] P. Xiong, M. Peng. J. Mater. Chem. C 7, 8303 (2019), https://doi.org/10.1039/C9TC02378J.Suche in Google Scholar
[34] J. J. Schuyt, G.V.M. Williams, S.V. Chong. Opt. Mater. 133, 112926 (2022), https://doi.org/10.1016/j.optmat.2022.112926.Suche in Google Scholar
[35] A.A. El-Maaref, E.A.A. Wahab, Kh.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef. Spectrochim. Acta A Mol. Biomol. Spectrosc. 242, 118774 (2020), https://doi.org/10.1016/j.saa.2020.118774.Suche in Google Scholar PubMed
[36] N. Spector, R. Reisfeld, L. Boehm. Chem. Phys. Lett. 49, 49 (1977), https://doi.org/10.1016/0009-2614(77)80439-9.Suche in Google Scholar
[37] R.A.S. Ferreira, E. Mamontova, A.M.P. Botas, M. Shestakov, J. Vanacken, V. Moshchalkov, Y. Guari, L.F. Chibotaru, D. Luneau, P.S. André, J. Larionova, J. Long, L.D. Carlos. Adv. Opt. Mater. 9, 2101495 (2021), https://doi.org/10.1002/adom.202101495.Suche in Google Scholar
[38] T. Tsuboi. J. Electrochem. Soc. 147, 1997 (2000), https://doi.org/10.1149/1.1393474.Suche in Google Scholar
[39] H. Amano, R. Collazo, C.D. Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P.J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L.J. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, Y. Zhang. J. Phys. D: Appl. Phys. 53, 503001 (2020), https://doi.org/10.1088/1361-6463/aba64c.Suche in Google Scholar
[40] R. Datt, S. Bishnoi, D. Hughes, P. Mahajan, A. Singh, R. Gupta, S. Arya, V. Gupta, W.C. Tsoi. Sol. RRL 6, 2200266 (2022), https://doi.org/10.1002/solr.202200266.Suche in Google Scholar
[41] M.B. De La Mora, O. Amelines-Sarria, B.M. Monroy, C.D. Hernández-Pérez, J.E. Lugo. Sol. Energy Mater. Sol. Cells 165, 59 (2017), https://doi.org/10.1016/j.solmat.2017.02.016.Suche in Google Scholar
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- The virtual conference on chemistry and its applications, VCCA-2023, 7–11 August 2023
- Special topic papers
- Recovery of wipe sampling of urban surfaces contaminated with blistering chemical warfare agents
- Bioremediation of cadmium contaminated soil by tea waste and impact on the accumulation of Cd in Helianthus annuus
- Exploring the potential of Meldrum’s acid-bearing chain extenders for mechanical recycling of PET
- In silico and in vitro profiling of coumarins and flavonoids for anti-Alzheimer and antioxidant activity
- MTT assay of human anti-breast cancer cells (MCF-7) in vitro potentials and phytochemicals screening of the root bark extracts from Cassia sieberiana
- Synthesis of some chalcones derivatives series and their antituberculosis activity
- Luminescence of silver, thulium and ytterbium doped oxyfluoride glasses
- Two new naturally dimers constituent from Indonesian Sesbania grandiflora plant and their bioactivity
- Antidiabetic and antibacterial activities of artocarpin: a flavonoid compound isolated from the root wood of the Pudau plant (Artocarpus kemando Miq.)
- Unraveling the influence of biomaterial’s functional groups in Cd biosorption: a density functional theory calculation
- Synthesis, characterization, and bioactivity test of dibutyltin(IV) dihydroxyibenzoate as disinfectant agent
- Computational investigation of thallium interactions with functionalized multi-walled carbon nanotubes for electrochemical sensing applications
- Conversion of elemental phosphorus under the electron beam irradiation
- Advances in understanding comproportionation and disproportionation in nickel catalysis
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- The virtual conference on chemistry and its applications, VCCA-2023, 7–11 August 2023
- Special topic papers
- Recovery of wipe sampling of urban surfaces contaminated with blistering chemical warfare agents
- Bioremediation of cadmium contaminated soil by tea waste and impact on the accumulation of Cd in Helianthus annuus
- Exploring the potential of Meldrum’s acid-bearing chain extenders for mechanical recycling of PET
- In silico and in vitro profiling of coumarins and flavonoids for anti-Alzheimer and antioxidant activity
- MTT assay of human anti-breast cancer cells (MCF-7) in vitro potentials and phytochemicals screening of the root bark extracts from Cassia sieberiana
- Synthesis of some chalcones derivatives series and their antituberculosis activity
- Luminescence of silver, thulium and ytterbium doped oxyfluoride glasses
- Two new naturally dimers constituent from Indonesian Sesbania grandiflora plant and their bioactivity
- Antidiabetic and antibacterial activities of artocarpin: a flavonoid compound isolated from the root wood of the Pudau plant (Artocarpus kemando Miq.)
- Unraveling the influence of biomaterial’s functional groups in Cd biosorption: a density functional theory calculation
- Synthesis, characterization, and bioactivity test of dibutyltin(IV) dihydroxyibenzoate as disinfectant agent
- Computational investigation of thallium interactions with functionalized multi-walled carbon nanotubes for electrochemical sensing applications
- Conversion of elemental phosphorus under the electron beam irradiation
- Advances in understanding comproportionation and disproportionation in nickel catalysis