Home Bioremediation of cadmium contaminated soil by tea waste and impact on the accumulation of Cd in Helianthus annuus
Article
Licensed
Unlicensed Requires Authentication

Bioremediation of cadmium contaminated soil by tea waste and impact on the accumulation of Cd in Helianthus annuus

  • Sumeira Moin EMAIL logo , Rafia Azmat , Ailyan Saleem , Tehseen Ahmed , Waseem Ahmed , Khalid Ahmed , Neelofer Hamid , Sajid Ali , Abdulwahed Fahad Alrefaei and Imran Malik
Published/Copyright: January 30, 2024

Abstract

The work aimed to assess the restoration of metal-contaminated soil pH and EC and impacts on Cd accumulation in plants Helianthus annuus (Sunflower) through tea waste in a natural environment. Various doses of Cd metal treatment (1–5 ppm) were provided to the soil with two sets of organic matter (tea waste) in a dry and wet state. The soil and plants were analyzed using analytical procedures like AAS, SEM and EDS, while pH and EC were measured through pH and conductivity meter. The mitigating effect of tea waste was observed on the pH (6.2–6.9) and EC of the soil, which was reflected by the healthy growth of the plants. It was established that the movement of the Cd was successfully controlled with the restoration of essential nutrient elements in different parts of plants. It was strongly related to recovered soil pH and EC in two sets of tested H. annuus plant species. The healthy growth of the plants showed that tea waste acts as a safe, harmless and sound remediator of soil, which enhances the soil nutrient ionic activity from soil to roots of the plants in the presence of the Cd metal, effective for the use of agriculture purposes.


Corresponding author: Sumeira Moin, Department of Botany, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).

Award Identifier / Grant number: 21-2077/SRGP/R&D/HEC/2018, RSPR 2024 R218

Acknowledgment

The authors are thankful to the Department of Chemistry, University of Karachi, for providing the research facilities to conduct this research and also extend our appreciation to the Research Supporting Project No. RSP2024R218, King Saud University Riyadh, Saudi Arabia.

  1. Research ethics: It is declared that no animal or human blood or any part is involved in the current investigation.

  2. Author contributions: Sumeira Moin: Methodology, Investigation, statistical analysis, Rafia Azmat: Writing original draft and Formal analysis, literature search. Neelofer Hamid and Khalid Ahmed, Writing - review & editing. Ailyan Saleem and Tehseen Ahmed: Writing - review & editing. Waseem Ahmed: Writing - review & editing, Sajid Ali, Abdulwahed fahad Alrefaeei and Imran Malik: English and scientific-technical editing.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The corresponding author is thankful to HEC Pakistan for providing Funds for the above project No. 21-2077/SRGP/R&D/HEC/2018. Also, we are grateful to the Researchers supporting Project No.RSP2024R218, King Saud University, Riyadh, P.O. BOX 2455. Saudia Arabia in English and Scientific Editing.

  5. Data availability: The authors confirm that the data supporting the findings of this study are available within the article.

References

[1] M. Farrell, D. L. Jones. J. Hazard. Mater. 175, 575 (2010), https://doi.org/10.1016/j.jhazmat.2009.10.044.Search in Google Scholar PubMed

[2] T. A. Sial, J. Liu, Y. Zhao, M. N. Khan, Z. Lan, J. Zhang, I. Rajpar. Molecules 24, 423 (2019), https://doi.org/10.3390/molecules24030423.Search in Google Scholar PubMed PubMed Central

[3] Q. Wang, J. Wen, X. Hu, L. Xing, C. Yan. J. Clean. Prod. 278, 123967 (2020), https://doi.org/10.1016/j.jclepro.2020.123967.Search in Google Scholar

[4] J. K. Verma, A. Sharma, K. K. Paramanick. Int. J. Appl. Sci. Eng. Res. 4, 321 (2015).Search in Google Scholar

[5] M. Getu. Mizan Law Rev. 3, 240 (2009), https://doi.org/10.4314/mlr.v3i2.54011.Search in Google Scholar

[6] P. Babyshakila, K. Usha. Adv. Stud. Biol. 1, 391 (2009).Search in Google Scholar

[7] M. Salimi, M. M. Amin, A. Ebrahimi, A. Ghazifard, P. Najafi. Int. J. Environ. Health Eng. 1, 11 (2012), https://doi.org/10.4103/2277-9183.94395.Search in Google Scholar

[8] D. M. Zhou, C. F. Deng, L. Cang. Chemosphere 56, 265 (2004), https://doi.org/10.1016/j.chemosphere.2004.02.033.Search in Google Scholar PubMed

[9] S. Basra, Z. Iqbal, H. Ur-Rehman, M. F Ejaz. J. Appl. Res. Technol. 12, 560 (2014), https://doi.org/10.1016/s1665-6423(14)71635-9.Search in Google Scholar

[10] H. Kaya, Ş. Çelebi, A. Kaya, M. Gül. Rev. Bras. Zootec. 47, 1–9 (2018), https://doi.org/10.1590/rbz4720170309.Search in Google Scholar

[11] J. C. Akan, S. I. Audu, Z. M. Audu. Environ. Prot. 4(6), 618–628 (2013).10.4236/jep.2013.46071Search in Google Scholar

[12] L. E. Attah, M. B. Regasa. Ethiop. J. Environ. Stud. Manag. 6, 620 (2013), https://doi.org/10.4314/ejesm.v6i6.5.Search in Google Scholar

[13] M. Patterson. J. Brand Manag. 6, 409 (1999), https://doi.org/10.1057/bm.1999.32.Search in Google Scholar

[14] M. R. Morales-Corts, R. Pérez-Sánchez, M. Á. Gómez-Sánchez. Sci. Agric. 75, 400 (2018), https://doi.org/10.1590/1678-992x-2016-0439.Search in Google Scholar

[15] A. S. Wang, J. S. Angle, R. L. Chaney, T. A. Delorme, R. D. Reeves. Plant Soil 281, 325 (2006), https://doi.org/10.1007/s11104-005-4642-9.Search in Google Scholar

[16] I. Riba, T. Á. Delvalls, J. M. Forja, A. Gómez-Parra. Environ. Toxicol. Chem. An Int. J. 23, 1100 (2004), https://doi.org/10.1897/023-601.Search in Google Scholar PubMed

[17] A. A. B. Moghal, M. Ashfaq, M. A. Al-Shamrani, A. Al-Mahbashi. J. Hazard Toxic Radioct. Waste 24, 04020029 (2020), https://doi.org/10.1061/(asce)hz.2153-5515.0000527.Search in Google Scholar

[18] R. Azmat, H. Akhter. Pakistan J. Bot. 42, 3065 (2010).Search in Google Scholar

[19] L. Cang, Q. Y. Wang, D. M. Zhou, H. Xu. Sep. Purif. Technol. 79, 246 (2011), https://doi.org/10.1016/j.seppur.2011.02.016.Search in Google Scholar

[20] A. Yan, Y. Wang, S. N. Tan, M. L. Mohd Yusof, S. Ghosh, Z. Chen. Front. Plant Sci. 11, 359 (2020), https://doi.org/10.3389/fpls.2020.00359.Search in Google Scholar PubMed PubMed Central

[21] D. Yang, J. Liang, Y. Wang, F. Sun, H. Tao, Q. Xu, L. Zhang, Z. Zhang, C. T. Ho, X. Wan. J. Sci. Food Agric. 96(2), 680 (2016), https://doi.org/10.1002/jsfa.7140.Search in Google Scholar PubMed

[22] H. Çelebi, G. Gök, O. Gök. Sci. Rep. 10, 17570 (2020), https://doi.org/10.1038/s41598-020-74553-4.Search in Google Scholar PubMed PubMed Central

[23] B. H. R. Gameli, A. B. Duwiejuah, A. A. Bawa. Sci. Afr. 17, e01296 (2022), https://doi.org/10.1016/j.sciaf.2022.e01296.Search in Google Scholar

[24] R. Li, Q. Liao, W. Li, L. Zhou, L. Liu, L. Lin, Z. Huang. Pol. J. Environ. Stud. 32, 125 (2022), https://doi.org/10.15244/pjoes/153983.Search in Google Scholar

[25] S. Moin, R. Azmat, W. Ahmed, A. Qayyum, H. A. El-Serehy, D. I. Hefft. Molecules 27(19), 6362 (2022), https://doi.org/10.3390/molecules27196362.Search in Google Scholar PubMed PubMed Central

[26] M. Z. Hashmi, C. Yu, H. Shen, D. Duan, C. Shen, L. Lou, Y. Chen. BioMed Res. Int. 15, 590306 (2013).Search in Google Scholar

[27] M. R. Motsara, R. N. Roy. Guide to Laboratory Establishment for Plant Nutrient Analysis, Food and Agriculture Organization of the United Nations, Rome (2008).Search in Google Scholar

[28] H. D. Barrs, P. E. Weatherley. Aust. J. Biol. Sci. 15, 413 (1962), https://doi.org/10.1071/bi9620413.Search in Google Scholar

[29] B. Hafner. in Scanning Electron Microscopy Primer, pp. 1–29, Characterization Facility, University of Minnesota-Twin Cities, Minneapolis and St. Paul (2007).Search in Google Scholar

[30] ISO. in Soil quality, Extraction of Trace Elements Soluble in Aqua Regia, p. 11466, International Organization for Standardization, Geneve, Switzerland (1995).Search in Google Scholar

[31] A. Król, K. Mizerna, M. Bożym. J. Hazard. Mater. 384, 121502 (2020), https://doi.org/10.1016/j.jhazmat.2019.121502.Search in Google Scholar PubMed

[32] M. M. Sintorini, H. Widyatmoko, E. Sinaga, N. Aliyah. Effect of pH on metal mobility in the soil, in IOP Conference Series: Earth Environ. Sci., 737, p. 012071, ISO, Bristol. England (2021).10.1088/1755-1315/737/1/012071Search in Google Scholar

[33] J. L. Ullman. in Soil Salinity in Agricultural Systems: The Basics, Agricultural & Biological Engineering University of Florida, Gainesville, Florida (2013).Search in Google Scholar

[34] J. Farifteh, F. Van der Meer, M. Van der Meijde, C. Atzberger. Geoderma 145(3–4), 196 (2008), https://doi.org/10.1016/j.geoderma.2008.03.011.Search in Google Scholar

[35] D. Huang, X. Gong, Y. Liu, G. Zeng, C. Lai, H. Bashir, J. Wan. Planta 245, 863 (2017), https://doi.org/10.1007/s00425-017-2664-1.Search in Google Scholar PubMed

[36] F. U. Haider, C. Liqun, J. A. Coulter, S. A. Cheema, J. Wu, R. Zhang, M. Farooq. Ecotoxicol. Environ. Saf. 211, 111887 (2021), https://doi.org/10.1016/j.ecoenv.2020.111887.Search in Google Scholar PubMed

[37] M. N. Feleafel, Z. M. Mirdad. J. Agric. Environ. Ethic 26, 547 (2013), https://doi.org/10.1007/s10806-012-9403-1.Search in Google Scholar

[38] J. L. Burkhead, K. A. Gogolin Reynolds, S. E. Abdel-Ghany, C. M. Cohu, M. Pilon. New Phytol. 82, 799 (2009), https://doi.org/10.1111/j.1469-8137.2009.02846.x.Search in Google Scholar PubMed

[39] J. Chmielowska-Bąk, J. Gzyl, R. Rucińska-Sobkowiak, M. Arasimowicz-Jelonek, J. Deckert. Front. Plant Sci. 5, 245 (2014), https://doi.org/10.3389/fpls.2014.00245.Search in Google Scholar PubMed PubMed Central

[40] S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel, A. Ahmad. Plant Signal. Behav. 7, 1456 (2012), https://doi.org/10.4161/psb.21949.Search in Google Scholar PubMed PubMed Central

[41] M. Vaculík, C. Konlechner, I. Langer, W. Adlassnig, M. Puschenreiter, A. Lux, M. T. Hauser. Environ. Pollut. 163, 117 (2012), https://doi.org/10.1016/j.envpol.2011.12.031.Search in Google Scholar PubMed PubMed Central

[42] M. Irfan, M. Hayat, S. Ahmad, A. M. N. Alyemeni. Saudi J. biolo. Sci. 20(1), 1–10 (2013).10.1016/j.sjbs.2012.11.004Search in Google Scholar PubMed PubMed Central

[43] Z. M. Gusiatin, E. Klimiuk. Chemosphere 86(4), 383 (2012), https://doi.org/10.1016/j.chemosphere.2011.10.027.Search in Google Scholar PubMed

[44] M. Rodriguez-Flores, E. Rodriguez-Castellon. Environ. Pollut. Ser. B Chem. Phys. 4(4), 281 (1982), https://doi.org/10.1016/0143-148x(82)90014-3.Search in Google Scholar

[45] M. Wang, W. Ma, R. L. Chaney, C. E. Green, W. Chen. J. Environ. Qual. 52, 26 (2023), https://doi.org/10.1002/jeq2.20418.Search in Google Scholar PubMed

[46] L. G. Zhu, X. X. Cheng, W. J. Zhang. Fuj. J. Agric. Sci. 28, 1310 (2013).Search in Google Scholar

[47] Y. Li, H. X. Wang, Y. S. Wu. Acta Ecol. Sin. 12, 147 (1992).Search in Google Scholar

[48] S. Danish, M. Zafar-ul-Hye. Phyton-Int. J. Exp. Bot. 89, 217 (2020), https://doi.org/10.32604/phyton.2020.08523.Search in Google Scholar

[49] K. Fent. Toxicol. Lett. 140, 353 (2003), https://doi.org/10.1016/s0378-4274(03)00032-8.Search in Google Scholar PubMed

[50] M Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, Y. S. Ok. Chemosphere 99, 19 (2014), https://doi.org/10.1016/j.chemosphere.2013.10.071.Search in Google Scholar PubMed

Published Online: 2024-01-30
Published in Print: 2024-03-25

© 2024 IUPAC & De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. The virtual conference on chemistry and its applications, VCCA-2023, 7–11 August 2023
  5. Special topic papers
  6. Recovery of wipe sampling of urban surfaces contaminated with blistering chemical warfare agents
  7. Bioremediation of cadmium contaminated soil by tea waste and impact on the accumulation of Cd in Helianthus annuus
  8. Exploring the potential of Meldrum’s acid-bearing chain extenders for mechanical recycling of PET
  9. In silico and in vitro profiling of coumarins and flavonoids for anti-Alzheimer and antioxidant activity
  10. MTT assay of human anti-breast cancer cells (MCF-7) in vitro potentials and phytochemicals screening of the root bark extracts from Cassia sieberiana
  11. Synthesis of some chalcones derivatives series and their antituberculosis activity
  12. Luminescence of silver, thulium and ytterbium doped oxyfluoride glasses
  13. Two new naturally dimers constituent from Indonesian Sesbania grandiflora plant and their bioactivity
  14. Antidiabetic and antibacterial activities of artocarpin: a flavonoid compound isolated from the root wood of the Pudau plant (Artocarpus kemando Miq.)
  15. Unraveling the influence of biomaterial’s functional groups in Cd biosorption: a density functional theory calculation
  16. Synthesis, characterization, and bioactivity test of dibutyltin(IV) dihydroxyibenzoate as disinfectant agent
  17. Computational investigation of thallium interactions with functionalized multi-walled carbon nanotubes for electrochemical sensing applications
  18. Conversion of elemental phosphorus under the electron beam irradiation
  19. Advances in understanding comproportionation and disproportionation in nickel catalysis
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1018/html
Scroll to top button