In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
-
Enrico Berretti
und Alessandro Lavacchi
Abstract
In this article, we present an in-situ and operando time-resolved X-ray Absorption Spectroscopy (XAS) technique which exploits a combination of Grazing Incidence XAS (GIXAS) and Fixed Energy X-ray Absorption Voltammetry (FEXRAV), the Grazing Incidence FEXRAV (GI-FEXRAV). A case-study is also outlined. Palladium ultra-low loadings were deposited above Au polycrystalline iso-oriented substrates adopting three different deposition methods: surface-controlled electrochemical methods, direct electrodeposition, and physical vapour deposition (PVD). These catalytical surfaces were prepared for the investigation by GI-FEXRAV of the Pd oxidation/dissolution phenomenon that could occur when the metal is used in the anodic compartment of Direct Alcohol Fuel Cells (DAFCs) or in electrochemical reformers. Moreover, we report a robust, low cost and versatile procedure to obtain wide and flat iso-oriented gold substrates that can mimic monocrystalline gold (1 1 1) in the electrochemical response. The use of GI-FEXRAV for the operando characterization of the catalysts, in conjunction with the designed experimental cell and our flexible Au-based electrochemical substrates show an invaluable potential in the operando study of fundamental phenomena in heterogeneous electrocatalysis model systems and, due to its versatility, paves the way to further studies on a wide selection of electrochemical systems.
Funding source: POR H2 AdP MMES/ENEA
Award Identifier / Grant number: Mission 2, Component 2, Investment 3.5
Funding source: Made in Italy – Circular and Sustainable (MICS) Extended Partnership
Funding source: Ministero dell’Università e della Ricerca
Award Identifier / Grant number: PRIN 2022 2022NW4P2T
Funding source: European Synchrotron Radiation Facility
Award Identifier / Grant number: EXP CH-6101, EXP MA-3431
Funding source: Ministero dell’Istruzione, dell’Università e della Ricerca
Award Identifier / Grant number: PRIN 2017 n.2017YH9MRK
Acknowledgments
Authors wanted to thank PRIN 2017 Project “Novel Multilayered and Micro-Machined Electrode Nano-Architectures for Electrocatalytic Applications (Fuel Cells and Electrolyzers)” (N° 2017YH9MRK) funded by Italian Ministry MUIR. Authors wanted to acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation beamtime for EXP MA-3431 and CH-6101. Thanks are due also to the Made in Italy – Circular and Sustainable (MICS) Extended Partnership funded by the European Union Next-Generation EU (Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4, Componente 2, Investimento 1.3 – D.D. 1551.11-10-2022, PE00000004), to the European Union – NextGeneration EU from the Italian Ministry of Environment and Energy Security POR H2 AdP MMES/ENEA with involvement of CNR and RSE, PNRR – Mission 2, Component 2, Investment 3.5 “Ricerca e sviluppo sull’idrogeno”. L.A.1.1.24, and to Ministero della Università e Ricerca PRIN 2022 2022NW4P2T (FUTURO) for financial support. Authors wanted also to acknowledge Carlo Bartoli from the CNR-ICCOM workshop for its help in developing the operando EC cells concept.
References
[1] Y. Yun. Alcohol fuels: current status and future direction. In Alcohol Fuels – Current Technologies and Future Prospect, IntechOpen, London (2020), https://www.intechopen.com/chapters/70966.10.5772/intechopen.89788Suche in Google Scholar
[2] A. M. F. R. Pinto, V. B. Oliveira, D. S. Falcão. In Direct Alcohol Fuel Cells for Portable Applications, Elsevier, Amsterdam (2018), https://www.sciencedirect.com/book/9780128118498/direct-alcohol-fuel-cells-for-portable-applications.10.1016/B978-0-12-811849-8.00002-4Suche in Google Scholar
[3] Y. Chen, M. Bellini, M. Bevilacqua, P. Fornasiero, A. Lavacchi, H. A. Miller, L. Wang, F. Vizza. ChemSusChem 8, 524 (2015), https://doi.org/10.1002/cssc.201402999.Suche in Google Scholar PubMed
[4] M. A. Damin Zhanga, D. Jia, J. Quinsonb. ChemXiv 1 (n.d), https://doi.org/10.26434/chemrxiv-2021-j5vb5.Suche in Google Scholar
[5] E. Berretti, L. Osmieri, V. Baglio, H. A. Miller, J. Filippi, F. Vizza, M. Santamaria, S. Specchia, C. Santoro, A. Lavacchi. Electrochem. Energy Rev. 6, 30 (2023), https://doi.org/10.1007/s41918-023-00189-3.Suche in Google Scholar
[6] Y. X. Chen, A. Lavacchi, H. A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza. Nat. Commun. 5, 4036 (2014), https://doi.org/10.1038/ncomms5036.Suche in Google Scholar PubMed
[7] H. A. Miller, A. Lavacchi, F. Vizza. Curr. Opin. Electrochem. 21, 140 (2020), https://doi.org/10.1016/j.coelec.2020.02.001.Suche in Google Scholar
[8] A. Lavacchi, H. Miller, F. Vizza. Nanotechnology in Electrocatalysis for Energy, Springer New York, New York, NY (2013).10.1007/978-1-4899-8059-5Suche in Google Scholar
[9] European Commission. Study on the critical raw materials for the EU 2023 – final report (n.d.), https://data.europa.eu/doi/10.2873/725585 (accessed October 9, 2023).10.56181/ETUQ3384Suche in Google Scholar
[10] H. Kim, T. Y. Yoo, M. S. Bootharaju, J. H. Kim, D. Y. Chung, T. Hyeon. Advanced Science 9, 2104054 (2022), https://doi.org/10.1002/advs.202104054.Suche in Google Scholar PubMed PubMed Central
[11] V. Bambagioni, C. Bianchini, Y. Chen, J. Filippi, P. Fornasiero, M. Innocenti, A. Lavacchi, A. Marchionni, W. Oberhauser, F. Vizza. ChemSusChem 5, 1266 (2012), https://doi.org/10.1002/cssc.201100738.Suche in Google Scholar PubMed
[12] H. A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di Benedetto, F. D’Acapito, Y. Paska, M. Page, D. R. Dekel. Angew. Chem., Int. Ed. 55, 6004 (2016), https://doi.org/10.1002/anie.201600647.Suche in Google Scholar PubMed
[13] E. Berretti, M. Longhi, P. Atanassov, D. Sebastián, C. lo Vecchio, V. Baglio, A. Serov, A. Marchionni, F. Vizza, C. Santoro, A. Lavacchi. Curr. Opin. Electrochem. 29, 100756 (2021), https://doi.org/10.1016/j.coelec.2021.100756.Suche in Google Scholar
[14] S. A. Mirshokraee, M. Muhyuddin, R. Morina, L. Poggini, E. Berretti, M. Bellini, A. Lavacchi, C. Ferrara, C. Santoro. J. Power Sources 557, 232571 (2023), https://doi.org/10.1016/j.jpowsour.2022.232571.Suche in Google Scholar
[15] S. A. Mirshokraee, M. Muhyuddin, R. Lorenzi, G. Tseberlidis, C. Lo Vecchio, V. Baglio, E. Berretti, A. Lavacchi, C. Santoro. SusMat 3, 248 (2023), https://doi.org/10.1002/sus2.121.Suche in Google Scholar
[16] M. Muhyuddin, A. Friedman, F. Poli, E. Petri, H. Honig, F. Basile, A. Fasolini, R. Lorenzi, E. Berretti, M. Bellini, A. Lavacchi, L. Elbaz, C. Santoro, F. Soavi. J. Power Sources 556, 232416 (2023), https://doi.org/10.1016/j.jpowsour.2022.232416.Suche in Google Scholar
[17] D. Testa, G. Zuccante, M. Muhyuddin, R. Landone, A. Scommegna, R. Lorenzi, M. Acciarri, E. Petri, F. Soavi, L. Poggini, L. Capozzoli, A. Lavacchi, N. Lamanna, A. Franzetti, L. Zoia, C. Santoro. Catalysts 13, 635 (2023), https://doi.org/10.3390/catal13030635.Suche in Google Scholar
[18] S. A. Mirshokraee, M. Muhyuddin, J. Orsilli, E. Berretti, L. Capozzoli, A. Lavacchi, C. Lo Vecchio, V. Baglio, A. Galli, A. Zaffora, F. Di Franco, M. Santamaria, L. Olivi, S. Pollastri, C. Santoro. Ind. Chem. Mater. 1, 343 (2023), https://doi.org/10.1039/D3IM00058C.Suche in Google Scholar
[19] M. Fracchia, P. Ghigna, A. Vertova, S. Rondinini, A. Minguzzi. Surfaces 1, 138 (2018), https://doi.org/10.3390/surfaces1010011.Suche in Google Scholar
[20] A. Minguzzi, O. Lugaresi, C. Locatelli, S. Rondinini, F. D’Acapito, E. Achilli, P. Ghigna. Anal. Chem. 85, 7009 (2013), https://doi.org/10.1021/ac401414v.Suche in Google Scholar PubMed
[21] M. Fracchia, A. Visibile, E. Ahlberg, A. Vertova, A. Minguzzi, P. Ghigna, S. Rondinini. ACS Appl. Energy Mater. 1, 1716 (2018), https://doi.org/10.1021/acsaem.8b00209.Suche in Google Scholar
[22] S. Rondinini, O. Lugaresi, E. Achilli, C. Locatelli, A. Minguzzi, A. Vertova, P. Ghigna, C. Comninellis. J. Electroanal. Chem. 766, 71 (2016), https://doi.org/10.1016/j.jelechem.2016.01.039.Suche in Google Scholar
[23] G. Montegrossi, A. Giaccherini, E. Berretti, F. Di Benedetto, M. Innocenti, F. D’Acapito, A. Lavacchi, F. Di Benedetto, M. Innocenti, F. D’Acapito, A. Lavacchi, F. Di Benedetto, M. Innocenti, F. D’Acapito, A. Lavacchi. J. Electrochem. Soc. 164, E3690 (2017), https://doi.org/10.1149/2.0711711jes.Suche in Google Scholar
[24] E. Berretti, A. Giaccherini, G. Montegrossi, F. D’Acapito, F. di Benedetto, C. Zafferoni, A. Puri, G. O. Lepore, H. Miller, W. Giurlani, M. Innocenti, F. Vizza, A. Lavacchi. Catalysts 9, 659 (2019), https://doi.org/10.3390/catal9080659.Suche in Google Scholar
[25] E. Berretti, M. V. Pagliaro, A. Giaccherini, G. Montegrossi, F. di Benedetto, G. O. Lepore, F. D’Acapito, F. Vizza, A. Lavacchi. Electrochim. Acta 418, 140351 (2022), https://doi.org/10.1016/j.electacta.2022.140351.Suche in Google Scholar
[26] L. Wang, V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi, A. Marchionni, F. Vizza, X. Fang, P. K. Shen. J. Power Sources 195, 8036 (2010), https://doi.org/10.1016/j.jpowsour.2010.06.101.Suche in Google Scholar
[27] L. K. Tsui, C. Zafferoni, A. Lavacchi, M. Innocenti, F. Vizza, G. Zangari. J. Power Sources 293, 815 (2015), https://doi.org/10.1016/j.jpowsour.2015.05.121.Suche in Google Scholar
[28] H. Miller, J. Ruggeri, A. Marchionni, M. Bellini, M. Pagliaro, C. Bartoli, A. Pucci, E. Passaglia, F. Vizza. Energies (Basel) 11, 369 (2018), https://doi.org/10.3390/en11020369.Suche in Google Scholar
[29] C. Bianchini, P. K. Shen. Chem. Rev. 109, 4183 (2009), https://doi.org/10.1021/cr9000995.Suche in Google Scholar PubMed
[30] M. V. Pagliaro, H. A. Miller, M. Bellini, B. Di Vico, W. Oberhauser, G. Zangari, M. Innocenti, F. Vizza. Inorg. Chim. Acta 525, 120488 (2021), https://doi.org/10.1016/j.ica.2021.120488.Suche in Google Scholar
[31] G. A. B. Mello, C. Busó-Rogero, E. Herrero, J. M. Feliu. J. Chem. Phys. 150, 041703 (2019), https://doi.org/10.1063/1.5048489.Suche in Google Scholar PubMed
[32] A. N. Geraldes, D. F. da Silva, E. S. Pino, J. C. M. da Silva, R. F. B. de Souza, P. Hammer, E. V. Spinacé, A. O. Neto, M. Linardi, M. C. dos Santos. Electrochim. Acta 111, 455 (2013), https://doi.org/10.1016/j.electacta.2013.08.021.Suche in Google Scholar
[33] Y. M. Asal, A. M. Mohammad, S. S. Abd El Rehim, I. M. Al-Akraa. Int. J. Electrochem. Sci. 16, 211133 (2021), https://doi.org/10.20964/2021.11.30.Suche in Google Scholar
[34] S. B. Strbac, M. Smiljanić, Z. Rakočević, S. Štrbac. Ethanol oxidation on Pd/Au(111) bimetallic surfaces in alkaline solution (2013), www.electrochemsci.org.10.1016/S1452-3981(23)14653-0Suche in Google Scholar
[35] T. R. Maumau, R. M. Modibedi, M. K. Mathe. Electro-oxidation of alcohols using carbon supported gold, palladium catalysts in alkaline media (2018), www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853.10.1016/j.matpr.2017.12.386Suche in Google Scholar
[36] L. S. Aota, C. Jung, S. Zhang, S.-H. Kim, B. Gault. ACS Energy Lett. 8, 2824 (2023), https://doi.org/10.1021/acsenergylett.3c00911.Suche in Google Scholar
[37] S. Shen, Y. Guo, L. Luo, F. Li, L. Li, G. Wei, J. Yin, C. Ke, J. Zhang. J. Phys. Chem. C 122, 1604 (2018), https://doi.org/10.1021/acs.jpcc.7b10009.Suche in Google Scholar
[38] Y. Wang, N. S. Hush, J. R. Reimers. Phys. Rev. B 75, 233416 (2007), https://doi.org/10.1103/PhysRevB.75.233416.Suche in Google Scholar
[39] D. Nečas, P. Klapetek. Open Phys. 10, 181 (2012), https://doi.org/10.2478/s11534-011-0096-2.Suche in Google Scholar
[40] I. Achari, S. Ambrozik, N. Dimitrov. J. Electrochem. Soc. 165, J3074 (2018), https://doi.org/10.1149/2.0121815jes.Suche in Google Scholar
[41] S. R. Brankovic, J. X. Wang, R. R. Ad Zi. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces (n.d.), www.elsevier.nl/locate/susc.Suche in Google Scholar
[42] L. A. Kibler. Preparation and characterization of noble metal single crystal electrode surfaces (2003), http://www.uni-ulm.de/echem.Suche in Google Scholar
[43] J. Tang, M. Petri, L. A. Kibler, D. M. Kolb. Electrochim. Acta 51, 125 (2005), https://doi.org/10.1016/j.electacta.2005.04.009.Suche in Google Scholar
[44] W. Giurlani, E. Berretti, M. Innocenti, A. Lavacchi. Coatings 10, 1211 (2020), https://doi.org/10.3390/coatings10121211.Suche in Google Scholar
[45] A. Moy, J. Fournelle. Microsc. Microanal. 26, 496 (2020), https://doi.org/10.1017/S1431927620014853.Suche in Google Scholar
[46] F. D’Acapito. ESRF LISA beamline (BM-08) annual report (2017), https://www.esrf.fr/files/live/sites/www/files/UsersAndScience/Experiments/CRG/BM08/General/ITCRG%40ESRFActivityReport_2017.pdf.Suche in Google Scholar
[47] A. Puri, G. Lepore, F. d’Acapito. Condens. Matter 4, 12 (2019), https://doi.org/10.3390/condmat4010012.Suche in Google Scholar
[48] J.-L. Revol, P. Berkvens, J.-F. Bouteille, N. Carmignani, L. Carver, J. Chavanne, J. M. Chaize, F. Ewald, A. Franchi, L. Hardy, J. Jacob, G. Le Bec, I. Leconte, S. M. Liuzzo, L. Jolly, D. Martin, J. Pasquaud, T. Perron, Q. Qin, P. Raimondi, B. Roche, K. B. Scheidt, R. Versteegen, S. White European. ESRF-EBS: implementation, performance and restart of user operation (2021), https://doi.org/10.18429/JACoW-IPAC2021-THPAB074.Suche in Google Scholar
[49] F. d’Acapito, G. O. Lepore, A. Puri, A. Laloni, F. La Manna, E. Dettona, A. De Luisa, A. Martin. J. Synchrotron Radiat. 26, 551 (2019), https://doi.org/10.1107/S160057751801843X.Suche in Google Scholar PubMed
[50] I. Davoli, H. N. Thanh, F. d’Acapito. ReflEXAFS technique: a powerful tool for structural study in new materials. In AIP Conf Proc, pp. 388–394, AIP (2003), https://pubs.aip.org/aip/acp/article/652/1/388/959262/ReflEXAFS-technique-a-powerful-tool-for-structural.10.1063/1.1536400Suche in Google Scholar
[51] F. D’Acapito, I. Davoli, P. Ghigna, S. Mobilio. J. Synchrotron Radiat. 10, 260 (2003), https://doi.org/10.1107/S0909049503005582.Suche in Google Scholar PubMed
[52] R. A. Powell, S. M. Rossnagel. Chapter 6 – directional deposition. In Thin Films, Vol. 26, pp. 185–213, Elsevier, Amsterdam (1999).10.1016/S1079-4050(99)80009-XSuche in Google Scholar
[53] D. M. Kolb, J. Schneider. Electrochim. Acta 31, 929 (1986), https://doi.org/10.1016/0013-4686(86)80005-6.Suche in Google Scholar
[54] H. Aitchison, N. Meyerbröker, T.-L. Lee, J. Zegenhagen, T. Potter, H. Früchtl, I. Cebula, M. Buck. Phys. Chem. Chem. Phys. 19, 24146 (2017), https://doi.org/10.1039/C7CP04244B.Suche in Google Scholar
[55] C. H. Chen, K. D. Kepler, A. A. Gewirth, B. M. Ocko, J. Wang. J. Phys. Chem. 97, 7290 (1993), https://doi.org/10.1021/j100130a028.Suche in Google Scholar
[56] V. Rooryck, F. Reniers, C. Buess-Herman, G. A. Attard, X. Yang. J. Electroanal. Chem. 482, 93 (2000), https://doi.org/10.1016/S0022-0728(00)00002-4.Suche in Google Scholar
[57] M. A. Schneeweiss, D. M. Kolb. Phys. Status Solidi A 173, 51 (1999), https://doi.org/10.1002/(SICI)1521-396X(199905)173:1<51::AID-PSSA51>3.0.CO;2-O.10.1002/(SICI)1521-396X(199905)173:1<51::AID-PSSA51>3.0.CO;2-OSuche in Google Scholar
[58] M. Nakamura, O. Endo, T. Ohta, M. Ito, Y. Yoda. Surf. Sci. 514, 227 (2002), https://doi.org/10.1016/S0039-6028(02)01634-5.Suche in Google Scholar
[59] A. Kuzume, E. Herrero, J. M. Feliu, R. J. Nichols, D. J. Schiffrin. J. Electroanal. Chem. 570, 157 (2004), https://doi.org/10.1016/j.jelechem.2004.02.012.Suche in Google Scholar
[60] F. Möller, O. M. Magnussen, R. J. Behm. Electrochim. Acta 40, 1259 (1995), https://doi.org/10.1016/0013-4686(95)00056-K.Suche in Google Scholar
[61] Z. Dursun, Ş. U. Karabiberoğlu, B. Gelmez, A. Başaran. Turk. J. Chem. 35, 349 (2011), https://doi.org/10.3906/kim-1007-777.Suche in Google Scholar
[62] J. Torrero, M. Montiel, M. A. Peña, P. Ocón, S. Rojas. Int. J. Hydrogen Energy 44, 31995 (2019), https://doi.org/10.1016/j.ijhydene.2019.10.124.Suche in Google Scholar
[63] W. Giurlani, M. Innocenti, A. Lavacchi. Coatings 8, 84 (2018), https://doi.org/10.3390/coatings8020084.Suche in Google Scholar
[64] W. Giurlani, E. Berretti, M. Innocenti, A. Lavacchi. Coatings 9, 79 (2019), https://doi.org/10.3390/coatings9020079.Suche in Google Scholar
[65] W. Giurlani, E. Berretti, A. Lavacchi, M. Innocenti. Anal. Chim. Acta 1130, 72 (2020), https://doi.org/10.1016/j.aca.2020.07.047.Suche in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches