Abstract
Cow’s milk proteins are encoded by highly polymorphic genes characterized by several mutations which result in different allelic variants. Each allelic variant has different possible effects on cheese-making properties and on human health. β-casein A1-A3-I-B, k-casein B and β-lactoglobulin B are supposed to influence milk cheese-making properties by increasing cheese or milk yield, by varying chemical parameters, by having small casein micelle size, and by influencing rennet coagulation time (RCT) and curd-firming rate (CFR). In addition, β-casein A1-B are also considered to be a risk factor for different health diseases such as ischemic heart disease (IHD), type 1 diabetes (T1D), decreased glutathione (GSH) concentration, and milk intolerance. An LC-MS method was applied to profile, for the first time, the main milk proteins genetic variants from Aosta Valley autochtonous cattle breeds. Analyses performed on milk collected from bovines of three cattle breeds (Red Pied – VRP, Black Pied – VNP and Chestnut – CAS), either from IAR experimental farm or from herds of dairy-producers in Aosta Valley region, showed quite high frequencies of β-casein A2 and A3/I, and low frequencies of β-casein A1. Moreover, low frequencies of β-casein B in VRP breed and high frequencies of the same variant in CAS, and VNP breeds have been found. As far as k-casein is concerned allelic variant B is the most diffused in VRP while allelic variant A in VNP and CAS breeds. Finally, β-lactoglobulin most diffused allelic variant for all breeds is B. Results suggest that Aosta Valley milk has good cheese-making properties and good frequencies of β-casein A2 which may be related to beneficial effects on human health. In light of these results, it is important to develop breeding programs which take into consideration milk proteins polymorphisms to further increase the milk suitability for cheese-making process and to decrease the presence of β-casein A1 and B in drinking milk which can be a risk factor for human health.
Funding source: Interreg
Award Identifier / Grant number: Interreg V-A Italy-Swiss Cooperation
Acknowledgments
We thank RAVA (Regione Autonoma Valle d’Aosta), HES-SO Valais (Haute Ecole d’Ingénierie) and AREV (Associazione Regionale Allevatori Valdostani) for supporting milk sampling and chemical analysis.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interest: The authors state no conflict of interest.
-
Research funding: This experimental work was financially supported, through TYPICALP project, by European Union, European regional Development Fund , Italian State, Swiss Confederation and Cantons co-financed operation, within the framework of the Interreg V-A Italy-Switzerland Cooperation Program.
-
Data availability: Not applicable.
References
[1] C. Sebastiani, C. Arcangeli, M. Ciullo, M. Torricelli, G. Cinti, S. Fisichella, M. Biagetti. Animals 10(252), 1 (2020), https://doi.org/10.3390/ani10020252.Suche in Google Scholar PubMed PubMed Central
[2] C.G. Shashank, K.P. Rishi, G. Garima, K. Taruneet, K.K. Manish. J. Pharmacogn. Phytochem. 7(4), 221 (2018). E-ISSN 2278-4136, P-ISSN 2349-8234.Suche in Google Scholar
[3] J.S.J Chia, J.L. McRae, A.K. Enjapoori, C.M. Lefèvre, S. Kukuljam, K.M. Dwyer. Nutrients 10(1291), 1 (2018), https://doi.org/10.3390/nu10091291.Suche in Google Scholar PubMed PubMed Central
[4] M. Firouzamandi, M. Gholami, M. Toloui, D. Eshghi. Russ. J. Genet. 54(11), 1352 (2018), https://doi.org/10.1134/s1022795418110054, ISSN 1022-7954.Suche in Google Scholar
[5] N.S. Marzanov, N.A. Popov, L.K. Marzanova, A.N. Popov, S.N. Petrov, M.Kh. Tokhov, Kh.Kh. Nacoev, Kh.A. Amerkhanov. Russ. Agric. Sci. 37(3), 244 (2011), https://doi.org/10.3103/s106836741103013x, ISSN 1068-3674.Suche in Google Scholar
[6] P. Formaggioni, A. Summer, M. Malacarne, P. Mariani. Ann. Fac. Med. Vet. Univ. Parma. 19, 127 (1999).Suche in Google Scholar
[7] D. Daniloski, N.M.D. Cunha, N.A. McCarthy, T.F. O’Callaghan, S. McParland, T. Vasiljevic. Trends Food Sci. Technol. 111, 233 (2021).10.1016/j.tifs.2021.02.073Suche in Google Scholar
[8] B. Juan, A.J. Trujillo. Foods 11, 1 (2022), https://doi.org/10.3390/foods11223648.Suche in Google Scholar PubMed PubMed Central
[9] N. Kovalyuk, E. Shiryaeva, L. Yakusheva, V. Kaishev, Z. Aisanov. Frequency distribution of polymorphic variants of the beta-casein locus in Russian various breed cattle subpopulations. In E3S Web of Conferences, Vol. 262, pp. 1–3, ITEEA, Russian Federation, Nalchik (2021).10.1051/e3sconf/202126202020Suche in Google Scholar
[10] Ö. Sahin, S. Boztepe, I. Aytekin. Selcuk J. Agric. Food Sci. 32(3), 632 (2018), https://doi.org/10.15316/SJAFS.2018.146. E-ISSN 2458-8377.Suche in Google Scholar
[11] M. Marković, D. Radonjić, M. Dokić, A. Kandić, B. Marković. Agric. For. 67(3), 61 (2021), https://doi.org/10.17707/AgricultForest.67.3.05.Suche in Google Scholar
[12] A.S. Ahmed, S. Rahmatalla, R. Bortfeldt, D. Arends, M. Reissmann, G.A. Brockmann. J. Appl. Genet. 58(2), 261 (2017), https://doi.org/10.1007/s13353-016-0381-2.Suche in Google Scholar PubMed
[13] M. Glantz, H. Lindmark Månsson, H. Stålhammar, M. Paulsson. J. Dairy Sci. 94(7), 3295 (2011), https://doi.org/10.3168/jds.2011-4317.Suche in Google Scholar PubMed
[14] A. Caroli, R. Rizzi, G. Lühken, G. Erhardt. J. Dairy Sci. 93(3), 1260 (2010), https://doi.org/10.3168/jds.2009-2521.Suche in Google Scholar PubMed
[15] M. Lisson, G. Lochnit, G. Erhardt. J. Dairy Sci. 96(9), 5532 (2013), https://doi.org/10.3168/jds.2013-6684.Suche in Google Scholar PubMed
[16] A. Perna, I. Intaglietta, E. Gambacorta, A. Simonetti. J. Dairy Sci. 99(5), 3288 (2016), https://doi.org/10.3168/jds.2015-10463.Suche in Google Scholar PubMed
[17] S. Meier, P. Korkuć, D. Arends, G.A. Brockmann. Front. Genet. 10(1129), 1 (2019), https://doi.org/10.3389/fgene.2019.01129.Suche in Google Scholar PubMed PubMed Central
[18] B. Petrat-Melin, P. Andersen, J.T. Rasmussen, N.A. Poulsen, L.B. Larsen, J.F. Young. J. Dairy Sci. 98(1), 15 (2015), https://doi.org/10.3168/jds.2014-8330.Suche in Google Scholar PubMed
[19] S.I.S. Kay, S. Delgado, J. Mittal, R.S. Eshraghi, R. Mittal, A.A. Eshraghi. J. Nutr. 151(5), 1061 (2021), https://doi.org/10.1093/jn/nxaa454.Suche in Google Scholar PubMed
[20] P. Priyadarshini, C. Mishra, B. Mishra, K. Swain, M. Pout, S.P. Mishra. Int. J. Chem. Stud. 6(1), 531 (2018). P-ISSN 2349-8528, E-ISSN 2321-4902.Suche in Google Scholar
[21] M. Giribaldi, C. Lamberti, S. Cirrincione, M.G. Giuffrida, L. Cavallarin. Front. Nutr. 9, 1art. 842375 (2022). https://doi.org/10.3389/fnut.2022.842375.Suche in Google Scholar PubMed PubMed Central
[22] M. Kaplan, B. Baydemir, B.B. Günar, A. Arslan, H. Duman, S. Karav. Front. Nutr. 9, 1 (2022), https://doi.org/10.3389/fnut.2022.935344, art. 935344.Suche in Google Scholar PubMed PubMed Central
[23] M. De Vasconcelos, L. Oliveira, J. Hill, A. Vidal. Foods 12(3151), 1 (2023), https://doi.org/10.3390/foods12173151.Suche in Google Scholar PubMed PubMed Central
[24] J.A. Gonzales-Malca, V.A. Tirado-Kulieva, M.S. Abanto-López, W.L. Aldana Juárez, C.M. Palacios-Zapata. Curr. Res. Food Sci. 7, 1 (2023), https://doi.org/10.1016/j.crfs.2023.100602.Suche in Google Scholar PubMed PubMed Central
[25] H. Buzás, R. Skékelyhidi, G. Szafner, K. Szabó, J. Süle, S. Bukovics, A.J. Kovács. Anal. Biochem. 658, 1 (2022), https://doi.org/10.1016/j.ab.2022.114939.Suche in Google Scholar PubMed
[26] R. De Poi, E. De Dominicis, E. Gritti, F. Fiorese, S. Saner, P. Polverino de Laureto. Food Anal. Methods 13(12), 2177 (2020), https://doi.org/10.1007/s12161-020-01817-0.Suche in Google Scholar
[27] S. Imperiale, K. Morozova, G. Ferrentino, M. Scampicchio. Eur. Food Res. Technol. 249(4), 861 (2023), https://doi.org/10.1007/s00217-022-04197-3.Suche in Google Scholar
[28] V. Vigolo, M. Franzoi, F. Cendron, G. Salvadore, M. Penasa, M. Cassandro, M. De Marchi. J. Dairy Sci. 105, 8946 (2022), https://doi.org/10.3168/jds.2022-22136.Suche in Google Scholar PubMed
[29] G. Miranda, L. Bianchi, Z. Kuprova, P. Trossat, P. Martin. Food Chem.: X 5, 1 (2020), https://doi.org/10.1016/j.fochx.2020.100080.Suche in Google Scholar PubMed PubMed Central
[30] D. Vincent, A. Elkins, M.R. Condina, V. Ezerkieks, S. Rochfort. PLoS One 10(11), 1 (2016), https://doi.org/10.1371/journal.pone.0163471.Suche in Google Scholar PubMed PubMed Central
[31] R. Winkler. RCM 24(3), 285 (2010), https://doi.org/10.1002/rcm.4384.Suche in Google Scholar PubMed
[32] V. Bisutti, S. Pegolo, D. Giannuzzi, L.F.M. Mota, A. Vanzin, A. Toscano, E. Trevisi, P. Ajmone Marsan, M. Brasca, A. Cecchinato. J. Dairy Sci. 105, 3794 (2022), https://doi.org/10.3168/jds.2021-21537.Suche in Google Scholar PubMed
[33] M.R. Ul Haq, R. Kapila, U.K. Shandilya, S. Kapila. Int. J. Food Prop. 17(8), 1726 (2014), https://doi.org/10.1080/10942912.2012.712077. ISSN 1094-2912.Suche in Google Scholar
[34] H. Dinc, E. Ozkan, E. Koban, I. Togan. Arch. Tierz. 56(65), 650 (2013), https://doi.org/10.7482/0003-9438-56-065.Suche in Google Scholar
[35] L.J. Royo, A. del Cerro, F. Vicente, A. Carballal, B. de la Roza-Delgado. Eur. Food Res. Technol. 238(2), 295 (2014), https://doi.org/10.1007/s00217-013-2101-z.Suche in Google Scholar
[36] M.A. Mu’in, A. Supriyantono. Media. Peternakan 35(3), 157 (2012), https://doi.org/10.5398/medpet.2012.35.3.157.Suche in Google Scholar
[37] S. Mumtaz, K. Javed, M. Dawood, M. Imran, A. Ali, N. Ramzan. Pakistan J. Zool. 54, 1 (2021), https://doi.org/10.17582/journal.pjz/20190307030303.Suche in Google Scholar
[38] A. Islam, S.M. Rahman, Md.M. Alam, M.Md.K. Hossain, Md.A. Alim, Md. Salimmullah, J. Alam. Analysis of Beta-casein gene variants of milk in cattle. In Conference Paper, pp. 1–7, Bangabandhu International Conference Center, Dhaka (2016).Suche in Google Scholar
[39] A.H.N. Rangel, L.G. Zaros, T.C. Lima, L.H.F. Borba, L.P. Novaes, L.F.M. Mota, M.S. Silva. Genet. Mol. Res. 16(2), 1 (2017), https://doi.org/10.4238/gmr16029592.Suche in Google Scholar PubMed
[40] J.L. Zepeda-Baptista, B. Alarcón-Zúniga, A. Ruíz-Flores, R. Núnez-Domínguez, R. Ramírez-Valverde. Electron. J. Biotechnol. 18(1), 1 (2015), https://doi.org/10.1016/j.ejbt.2014.10.002.Suche in Google Scholar
[41] T.I. Epishko, L.A. Tanana, V.V. Peshko, D.E. Mostovoi. Russ. Agric. Sci. 36(2), 119 (2010), https://doi.org/10.3103/s1068367410020126, ISSN 1068-3674.Suche in Google Scholar
[42] F.F. Zinnatov, F.F. Zinnatova, A.H. Volkov, T.M. Akhmetov, A.M. Alimov, T.R. Yakupov, D.D. Hairullin, N.Y. Safina. Int. J. Pharm. Sci. Res. 11(2), 1428 (2020), https://doi.org/10.26452/ijrps.v11i2.2013.Suche in Google Scholar
[43] S.G. Pishchan, K.A. Sylychenko. Regul. Mech. Biosyst 12(3), 513 (2021), https://doi.org/10.15421/022170.Suche in Google Scholar
[44] A. Summer, E. Santus, L. Casanova, H. Joerg, A. Rossoni, C. Nicoletti, G. Donofrio, P. Mariani, M. Malacarne. J. Dairy Sci. 93(2), 796 (2010), https://doi.org/10.3168/jds.2009-2636.Suche in Google Scholar PubMed
[45] C. Zhou, C. Li, W. Cai, S. Liu, H. Yin, S. Shi, Q. Zhang, S. Zhang. Front. Genet. 10(72), 1 (2019), https://doi.org/10.3389/fgene.2019.00072.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2023-0014).
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- IUPAC Technical Reports
- Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
- Glossary of terms used in biochar research (IUPAC Technical Report)
- Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
- Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
- Milk protein polymorphisms of Aosta Valley cattle breeds
- Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
- Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
- Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
- Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
- Method development for multielement determination of halogens and sulfur in teas
- Regular Review Article
- A brief history of risk assessment for agrochemicals
- Regular Research Articles
- Capture of volatile iodine by aromatic amines solutions
- Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
- Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids
Artikel in diesem Heft
- Frontmatter
- In this issue
- IUPAC Technical Reports
- Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
- Glossary of terms used in biochar research (IUPAC Technical Report)
- Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
- Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
- Milk protein polymorphisms of Aosta Valley cattle breeds
- Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
- Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
- Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
- Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
- Method development for multielement determination of halogens and sulfur in teas
- Regular Review Article
- A brief history of risk assessment for agrochemicals
- Regular Research Articles
- Capture of volatile iodine by aromatic amines solutions
- Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
- Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids