Abstract
Microwave-induced combustion was evaluated as a sample preparation method for several types of tea (black, green, lemon balm, boldo, and mint) for further determination of bromine, chlorine, fluorine, iodine, and sulfur by ion chromatography. Parameters such as the sample mass efficiently decomposed and the most suitable absorbing solution (ultrapure water and 25, 50, 100, and 150 mmol L−1 NH4OH) were evaluated, considering the characteristics of the analytes and the determination technique used. The maximum sample mass possible to be decomposed was 900 mg of milled tea in the form of pellets, and the absorbing solution chosen was 100 mmol L−1 NH4OH, which provided suitable stabilization of the analytes (recoveries between 95 % and 103 %). To assess the accuracy of the proposed method, a certified reference material (BCR 060, aquatic plant) was analyzed. Agreements with the certified values ranged from 101 % to 107 %. The proposed method was used to analyze tea samples and the concentrations ranged from 549 to 2,549 mg kg−1 for chlorine, 223 to 828 mg kg−1 for fluorine, and 786 to 4,023 mg kg−1 for sulfur; bromine and iodine concentrations were below the limits of quantification (42 and 80 mg kg−1, respectively) in all evaluated samples.
Funding source: Instituto Nacional de Ciência e Tecnologia de Bioanalítica
Award Identifier / Grant number: 465389/2014-7
Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Award Identifier / Grant number: code 001
Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Award Identifier / Grant number: Numbers 312843/2020-8, and 406118/2021-3
Funding source: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
Award Identifier / Grant number: 19/2551-0001866-5 and 22/2551-0000389-3
Acknowledgments
This study was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Numbers 312843/2020-8, and 406118/2021-3); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Grant code 001); Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio, Grant Number 465389/2014-7); Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Grant Numbers 19/2551-0001866-5, and 22/2551-0000389-3).
References
1. Xian, E.-H.; Zhang, H.-B.; Sheng, J.; Li, K.; Zhang, Q. J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; Huang, H.; Tong, Y.; Nan, H.; Shi, C.; Shi, C.; Jiang, J.-J.; Mao, S.-Y.; Jiao, J.-Y.; Zhang, D.; Zhao, Y.-J.; Zhang, L.-P.; Liu, B.-Y.; Shao, S.-F.; Ni, D.-J.; Eichler, E. E.; Gao, L.-Z. Mol. Plant 2017, 10, 866–877; https://doi.org/10.1016/j.molp.2017.04.002.Search in Google Scholar PubMed
2. Food and Agriculture Organization of the United Nations, FAO. Global Tea Consumption and Production Driven by Robust Demand in China and India. https://www.fao.org/news/story/en/item/1136255/icode/ (accessed 2023-02-24).Search in Google Scholar
3. Kiferle, C.; Martinelli, M.; Salzano, A. M.; Gonzali, S.; Beltrami, S.; Salvadori, P. A.; Hora, K.; Holwerda, H. T.; Scaloni, A.; Perata, P. Front. Plant Sci. 2021, 12, 1; https://doi.org/10.3389/fpls.2021.616868.Search in Google Scholar PubMed PubMed Central
4. Baunthiyal, M.; Ranghar, S. Clean: Soil, Air, Water 2013, 43, 127–132; https://doi.org/10.1002/clen.201300353.Search in Google Scholar
5. World Health Organization Trace Elements in Human Nutrition and Health, 1996. https://apps.who.int/iris/handle/10665/37931 (accessed 2023-03-31).Search in Google Scholar
6. Pavelka, S. Physiol. Res. 2004, 53, 1.Search in Google Scholar
7. Winder, C. Environ. Res.: Sect. A 2001, 85, 105–114; https://doi.org/10.1006/enrs.2000.4110.Search in Google Scholar PubMed
8. Singh, A.; Singh, J. Effects on human health due to fluoride. In Green Technologies for the Fluoridation of Water; Elsevier: Kidlington, 1, 2021; pp. 1–16.10.1016/B978-0-323-85768-0.00006-3Search in Google Scholar
9. Otten, J. J.; Hellwig, J. P.; Meyers, L. D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, 2006; p. 1329.Search in Google Scholar
10. Institute of Medicine. Food and Nutrition Board; National Academy Press: Washington, 2001; p. 258.Search in Google Scholar
11. Morés, S.; Monteiro, G. C.; Santos, F. D. S.; Carasek, E.; Welz, B. Talanta 2011, 85, 2681–2685; https://doi.org/10.1016/j.talanta.2011.08.044.Search in Google Scholar PubMed
12. Nascimento, M. S.; Mendes, A. L. G.; Henn, A. S.; Picoloto, R. S.; Mello, P. A.; Flores, E. M. Spectrochim. Acta, Part B 2017, 138, 58–63; https://doi.org/10.1016/j.sab.2017.10.009.Search in Google Scholar
13. Müller, A. L. H.; Müller, C. C.; Antes, F. G.; Barin, J. S.; Dressler, V. L.; Flores, E. M. M.; Müller, E. I. Anal. Lett. 2012, 45, 1004–1015.10.1080/00032719.2012.670800Search in Google Scholar
14. Mesko, M. F.; da Costa, V. C.; Picoloto, R. S.; Bizzi, C. A.; Mello, P. A. J. Anal. At. Spectrom. 2016, 31, 1243R–1261; https://doi.org/10.1039/c5ja00488h.Search in Google Scholar
15. Mello, P. A.; Barin, J. S.; Duarte, F. A.; Bizzi, C. A.; Diehl, L. O.; Muller, E. I.; Flores, E. M. M. Anal. Bioanal. Chem. 2013, 405, 7615–7642; https://doi.org/10.1007/s00216-013-7077-9.Search in Google Scholar PubMed
16. Mesko, M. F.; Pereira, R. M.; Scaglioni, P. T.; Novo, D. L. R. Anal. Bioanal. Chem. 2019, 411, 4873–4881; https://doi.org/10.1007/s00216-019-01733-1.Search in Google Scholar PubMed
17. Horwitz, W.; Latimer, G. W. Official Methods of Analysis of Association of Official Agricultural Chemists International, Vol. 3; Oxford University Press: USA, 2005; p. 17.Search in Google Scholar
18. Horwitz, W.; Latimer, G. W. Official Methods of Analysis of Association of Official Agricultural Chemists International, Vol. 3; Oxford University Press: USA, 2005; p. 15.Search in Google Scholar
19. Horwitz, W.; Latimer, G. W. Official Methods of Analysis of Association of Official Agricultural Chemists International, Vol. 3; Oxford University Press: USA, 2005; p. 26.Search in Google Scholar
20. Kanrar, B.; Kundu, S.; Sengupta, S.; Yeasin, M.; Paul, R. K.; Karak, T. J. Food Compos. Anal. 2024, 127, 105928; https://doi.org/10.1016/j.jfca.2023.105928.Search in Google Scholar
21. Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics; EURACHEM: Teddington, 2, 2014; pp. 24–25.Search in Google Scholar
22. Costa, V. C.; Picoloto, R. S.; Hartwig, C. A.; Mello, P. A.; Flores, E. M. M.; Mesko, M. F. Anal. Bioanal. Chem. 2015, 407, 7957–7964; https://doi.org/10.1007/s00216-015-8967-9.Search in Google Scholar PubMed
23. Gómez, M.; Rodríguez, I.; Cámara, C.; Palacios, M. A. Analyst 1990, 115, 553–557; https://doi.org/10.1039/an9901500553.Search in Google Scholar PubMed
24. Zhu, B.; Zhixiong, Z.; Jing, Y. J. Chromatogr. A 2006, 1118 (1), 106–110; https://doi.org/10.1016/j.chroma.2006.01.139.Search in Google Scholar PubMed
25. Singh, A.; Hidangmayum, A.; Tiwari, P.; Kumar, V. New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdã, 2022; pp. 99–118.10.1016/B978-0-323-85581-5.00018-5Search in Google Scholar
26. Zhang, D.; Xu, X.; Wu, X.; Lin, Y.; Li, B.; Chen, Y.; Li, X.; Shen, J.; Xiao, L.; Lu, S. J. Food Compos. Anal. 2023, 118, 105205; https://doi.org/10.1016/j.jfca.2023.105205.Search in Google Scholar
27. Wen, C.; Zhang, Q.; Xie, F.; Jiang, J. Front. Nutr. 2022, 9, 1030344; https://doi.org/10.3389/fnut.2022.1030344.Search in Google Scholar PubMed PubMed Central
28. Wong, M. H.; Fung, K. F.; Carr, H. P. Toxicol. Lett. 2003, 137, 111–120; https://doi.org/10.1016/s0378-4274(02)00385-5.Search in Google Scholar PubMed
29. Desideri, D.; Meli, M. A.; Roselli, C. Microchem. J. 2010, 95, 174–180; https://doi.org/10.1016/j.microc.2009.11.010.Search in Google Scholar
30. Bechlin, M. A.; Neto, J. A. G.; Nóbrega, J. A. Microchem. J. 2013, 109, 134–138; https://doi.org/10.1016/j.microc.2012.03.013.Search in Google Scholar
31. Nascimento, M. S.; Durizan, G. T.; Picoloto, R. S.; Mello, P. A.; Flores, E. M. M. Drug Anal. Res. 2021, 5, 19–25; https://doi.org/10.22456/2527-2616.108933.Search in Google Scholar
32. Chen, W.; He, Z. L.; Yang, X. E.; Mishra, S.; Stoffella, P. J. J. Plant Nutr. 2010, 33(7), 943.10.1080/01904160903242417Search in Google Scholar
33. Chao, D. Y.; Baraniecka, P.; Danku, J.; Koprivova, A.; Lahner, B.; Luo, H.; Yakubova, E.; Dilkes, B.; Kopriva, S.; Salt, D. E. Plant Physiol. 2014, 166(3), 1593–1608; https://doi.org/10.1104/pp.114.247825.Search in Google Scholar PubMed PubMed Central
34. Gui, J.; Rao, S.; Huang, X.; Liu, X.; Cheng, S.; Xu, F. Sci. Total Environ. 2022, 853, 158673; https://doi.org/10.1016/j.scitotenv.2022.158673.Search in Google Scholar PubMed
35. Ali, S.; Riaz, A.; Mamtaz, S.; Haider, H. Curr. Rese. Agri. Far. 2023, 4, 1–15; https://doi.org/10.18782/2582-7146.182.Search in Google Scholar
36. Cao, J.; Liu, J.-W.; Tang, L.-L.; Sangbu, D.-Z.; Yu, S.; Zhou, S.; Yu, Y.; Qu, H.-Y. Fluoride 2005, 38, 1.Search in Google Scholar
37. Turck, D.; Castenmiller, J.; Henauw, S.; Hirsch-Ernst, K.-I.; Kearney, J.; Knutsen, H. K.; Maciuk, A.; Mangelsdor, I.; McArdle, H. J.; Pelaez, C.; Pentieva, K.; Siani, A.; Thies, F.; Tsabouri, S.; Vinceti, M. EFSA 2019, 17, e05778.Search in Google Scholar
38. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: US, 1997. https://www.ncbi.nlm.nih.gov/books/NBK109832/ (accessed 2024-04-04).Search in Google Scholar
39. Anastassakis, K. Androgenetic Alopecia from A to Z; Springer: Berlin, Germany, 62, 2022; pp. 357–362.10.1007/978-3-031-08057-9_40Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0219).
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- IUPAC Technical Reports
- Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
- Glossary of terms used in biochar research (IUPAC Technical Report)
- Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
- Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
- Milk protein polymorphisms of Aosta Valley cattle breeds
- Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
- Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
- Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
- Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
- Method development for multielement determination of halogens and sulfur in teas
- Regular Review Article
- A brief history of risk assessment for agrochemicals
- Regular Research Articles
- Capture of volatile iodine by aromatic amines solutions
- Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
- Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids
Articles in the same Issue
- Frontmatter
- In this issue
- IUPAC Technical Reports
- Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
- Glossary of terms used in biochar research (IUPAC Technical Report)
- Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
- Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
- Milk protein polymorphisms of Aosta Valley cattle breeds
- Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
- Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
- Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
- Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
- Method development for multielement determination of halogens and sulfur in teas
- Regular Review Article
- A brief history of risk assessment for agrochemicals
- Regular Research Articles
- Capture of volatile iodine by aromatic amines solutions
- Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
- Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids