Home Method development for multielement determination of halogens and sulfur in teas
Article
Licensed
Unlicensed Requires Authentication

Method development for multielement determination of halogens and sulfur in teas

  • Marcia F. Mesko ORCID logo EMAIL logo , Larissa C. A. Costa , Jenifer H. Cerqueira , Fernanda P. Balbinot and Filipe S. Rondan
Published/Copyright: August 1, 2024

Abstract

Microwave-induced combustion was evaluated as a sample preparation method for several types of tea (black, green, lemon balm, boldo, and mint) for further determination of bromine, chlorine, fluorine, iodine, and sulfur by ion chromatography. Parameters such as the sample mass efficiently decomposed and the most suitable absorbing solution (ultrapure water and 25, 50, 100, and 150 mmol L−1 NH4OH) were evaluated, considering the characteristics of the analytes and the determination technique used. The maximum sample mass possible to be decomposed was 900 mg of milled tea in the form of pellets, and the absorbing solution chosen was 100 mmol L−1 NH4OH, which provided suitable stabilization of the analytes (recoveries between 95 % and 103 %). To assess the accuracy of the proposed method, a certified reference material (BCR 060, aquatic plant) was analyzed. Agreements with the certified values ranged from 101 % to 107 %. The proposed method was used to analyze tea samples and the concentrations ranged from 549 to 2,549 mg kg−1 for chlorine, 223 to 828 mg kg−1 for fluorine, and 786 to 4,023 mg kg−1 for sulfur; bromine and iodine concentrations were below the limits of quantification (42 and 80 mg kg−1, respectively) in all evaluated samples.


Corresponding author: Marcia F. Mesko, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil, Telephone number: + 55 53 3275 7387, e-mail:
Article note: A special collection of invited papers by recipients of the 2023 IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards Common.

Award Identifier / Grant number: 465389/2014-7

Award Identifier / Grant number: code 001

Award Identifier / Grant number: Numbers 312843/2020-8, and 406118/2021-3

Award Identifier / Grant number: 19/2551-0001866-5 and 22/2551-0000389-3

Acknowledgments

This study was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Numbers 312843/2020-8, and 406118/2021-3); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Grant code 001); Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio, Grant Number 465389/2014-7); Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Grant Numbers 19/2551-0001866-5, and 22/2551-0000389-3).

References

1. Xian, E.-H.; Zhang, H.-B.; Sheng, J.; Li, K.; Zhang, Q. J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; Huang, H.; Tong, Y.; Nan, H.; Shi, C.; Shi, C.; Jiang, J.-J.; Mao, S.-Y.; Jiao, J.-Y.; Zhang, D.; Zhao, Y.-J.; Zhang, L.-P.; Liu, B.-Y.; Shao, S.-F.; Ni, D.-J.; Eichler, E. E.; Gao, L.-Z. Mol. Plant 2017, 10, 866–877; https://doi.org/10.1016/j.molp.2017.04.002.Search in Google Scholar PubMed

2. Food and Agriculture Organization of the United Nations, FAO. Global Tea Consumption and Production Driven by Robust Demand in China and India. https://www.fao.org/news/story/en/item/1136255/icode/ (accessed 2023-02-24).Search in Google Scholar

3. Kiferle, C.; Martinelli, M.; Salzano, A. M.; Gonzali, S.; Beltrami, S.; Salvadori, P. A.; Hora, K.; Holwerda, H. T.; Scaloni, A.; Perata, P. Front. Plant Sci. 2021, 12, 1; https://doi.org/10.3389/fpls.2021.616868.Search in Google Scholar PubMed PubMed Central

4. Baunthiyal, M.; Ranghar, S. Clean: Soil, Air, Water 2013, 43, 127–132; https://doi.org/10.1002/clen.201300353.Search in Google Scholar

5. World Health Organization Trace Elements in Human Nutrition and Health, 1996. https://apps.who.int/iris/handle/10665/37931 (accessed 2023-03-31).Search in Google Scholar

6. Pavelka, S. Physiol. Res. 2004, 53, 1.Search in Google Scholar

7. Winder, C. Environ. Res.: Sect. A 2001, 85, 105–114; https://doi.org/10.1006/enrs.2000.4110.Search in Google Scholar PubMed

8. Singh, A.; Singh, J. Effects on human health due to fluoride. In Green Technologies for the Fluoridation of Water; Elsevier: Kidlington, 1, 2021; pp. 1–16.10.1016/B978-0-323-85768-0.00006-3Search in Google Scholar

9. Otten, J. J.; Hellwig, J. P.; Meyers, L. D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, 2006; p. 1329.Search in Google Scholar

10. Institute of Medicine. Food and Nutrition Board; National Academy Press: Washington, 2001; p. 258.Search in Google Scholar

11. Morés, S.; Monteiro, G. C.; Santos, F. D. S.; Carasek, E.; Welz, B. Talanta 2011, 85, 2681–2685; https://doi.org/10.1016/j.talanta.2011.08.044.Search in Google Scholar PubMed

12. Nascimento, M. S.; Mendes, A. L. G.; Henn, A. S.; Picoloto, R. S.; Mello, P. A.; Flores, E. M. Spectrochim. Acta, Part B 2017, 138, 58–63; https://doi.org/10.1016/j.sab.2017.10.009.Search in Google Scholar

13. Müller, A. L. H.; Müller, C. C.; Antes, F. G.; Barin, J. S.; Dressler, V. L.; Flores, E. M. M.; Müller, E. I. Anal. Lett. 2012, 45, 1004–1015.10.1080/00032719.2012.670800Search in Google Scholar

14. Mesko, M. F.; da Costa, V. C.; Picoloto, R. S.; Bizzi, C. A.; Mello, P. A. J. Anal. At. Spectrom. 2016, 31, 1243R–1261; https://doi.org/10.1039/c5ja00488h.Search in Google Scholar

15. Mello, P. A.; Barin, J. S.; Duarte, F. A.; Bizzi, C. A.; Diehl, L. O.; Muller, E. I.; Flores, E. M. M. Anal. Bioanal. Chem. 2013, 405, 7615–7642; https://doi.org/10.1007/s00216-013-7077-9.Search in Google Scholar PubMed

16. Mesko, M. F.; Pereira, R. M.; Scaglioni, P. T.; Novo, D. L. R. Anal. Bioanal. Chem. 2019, 411, 4873–4881; https://doi.org/10.1007/s00216-019-01733-1.Search in Google Scholar PubMed

17. Horwitz, W.; Latimer, G. W. Official Methods of Analysis of Association of Official Agricultural Chemists International, Vol. 3; Oxford University Press: USA, 2005; p. 17.Search in Google Scholar

18. Horwitz, W.; Latimer, G. W. Official Methods of Analysis of Association of Official Agricultural Chemists International, Vol. 3; Oxford University Press: USA, 2005; p. 15.Search in Google Scholar

19. Horwitz, W.; Latimer, G. W. Official Methods of Analysis of Association of Official Agricultural Chemists International, Vol. 3; Oxford University Press: USA, 2005; p. 26.Search in Google Scholar

20. Kanrar, B.; Kundu, S.; Sengupta, S.; Yeasin, M.; Paul, R. K.; Karak, T. J. Food Compos. Anal. 2024, 127, 105928; https://doi.org/10.1016/j.jfca.2023.105928.Search in Google Scholar

21. Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics; EURACHEM: Teddington, 2, 2014; pp. 24–25.Search in Google Scholar

22. Costa, V. C.; Picoloto, R. S.; Hartwig, C. A.; Mello, P. A.; Flores, E. M. M.; Mesko, M. F. Anal. Bioanal. Chem. 2015, 407, 7957–7964; https://doi.org/10.1007/s00216-015-8967-9.Search in Google Scholar PubMed

23. Gómez, M.; Rodríguez, I.; Cámara, C.; Palacios, M. A. Analyst 1990, 115, 553–557; https://doi.org/10.1039/an9901500553.Search in Google Scholar PubMed

24. Zhu, B.; Zhixiong, Z.; Jing, Y. J. Chromatogr. A 2006, 1118 (1), 106–110; https://doi.org/10.1016/j.chroma.2006.01.139.Search in Google Scholar PubMed

25. Singh, A.; Hidangmayum, A.; Tiwari, P.; Kumar, V. New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdã, 2022; pp. 99–118.10.1016/B978-0-323-85581-5.00018-5Search in Google Scholar

26. Zhang, D.; Xu, X.; Wu, X.; Lin, Y.; Li, B.; Chen, Y.; Li, X.; Shen, J.; Xiao, L.; Lu, S. J. Food Compos. Anal. 2023, 118, 105205; https://doi.org/10.1016/j.jfca.2023.105205.Search in Google Scholar

27. Wen, C.; Zhang, Q.; Xie, F.; Jiang, J. Front. Nutr. 2022, 9, 1030344; https://doi.org/10.3389/fnut.2022.1030344.Search in Google Scholar PubMed PubMed Central

28. Wong, M. H.; Fung, K. F.; Carr, H. P. Toxicol. Lett. 2003, 137, 111–120; https://doi.org/10.1016/s0378-4274(02)00385-5.Search in Google Scholar PubMed

29. Desideri, D.; Meli, M. A.; Roselli, C. Microchem. J. 2010, 95, 174–180; https://doi.org/10.1016/j.microc.2009.11.010.Search in Google Scholar

30. Bechlin, M. A.; Neto, J. A. G.; Nóbrega, J. A. Microchem. J. 2013, 109, 134–138; https://doi.org/10.1016/j.microc.2012.03.013.Search in Google Scholar

31. Nascimento, M. S.; Durizan, G. T.; Picoloto, R. S.; Mello, P. A.; Flores, E. M. M. Drug Anal. Res. 2021, 5, 19–25; https://doi.org/10.22456/2527-2616.108933.Search in Google Scholar

32. Chen, W.; He, Z. L.; Yang, X. E.; Mishra, S.; Stoffella, P. J. J. Plant Nutr. 2010, 33(7), 943.10.1080/01904160903242417Search in Google Scholar

33. Chao, D. Y.; Baraniecka, P.; Danku, J.; Koprivova, A.; Lahner, B.; Luo, H.; Yakubova, E.; Dilkes, B.; Kopriva, S.; Salt, D. E. Plant Physiol. 2014, 166(3), 1593–1608; https://doi.org/10.1104/pp.114.247825.Search in Google Scholar PubMed PubMed Central

34. Gui, J.; Rao, S.; Huang, X.; Liu, X.; Cheng, S.; Xu, F. Sci. Total Environ. 2022, 853, 158673; https://doi.org/10.1016/j.scitotenv.2022.158673.Search in Google Scholar PubMed

35. Ali, S.; Riaz, A.; Mamtaz, S.; Haider, H. Curr. Rese. Agri. Far. 2023, 4, 1–15; https://doi.org/10.18782/2582-7146.182.Search in Google Scholar

36. Cao, J.; Liu, J.-W.; Tang, L.-L.; Sangbu, D.-Z.; Yu, S.; Zhou, S.; Yu, Y.; Qu, H.-Y. Fluoride 2005, 38, 1.Search in Google Scholar

37. Turck, D.; Castenmiller, J.; Henauw, S.; Hirsch-Ernst, K.-I.; Kearney, J.; Knutsen, H. K.; Maciuk, A.; Mangelsdor, I.; McArdle, H. J.; Pelaez, C.; Pentieva, K.; Siani, A.; Thies, F.; Tsabouri, S.; Vinceti, M. EFSA 2019, 17, e05778.Search in Google Scholar

38. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: US, 1997. https://www.ncbi.nlm.nih.gov/books/NBK109832/ (accessed 2024-04-04).Search in Google Scholar

39. Anastassakis, K. Androgenetic Alopecia from A to Z; Springer: Berlin, Germany, 62, 2022; pp. 357–362.10.1007/978-3-031-08057-9_40Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0219).


Published Online: 2024-08-01
Published in Print: 2024-11-26

© 2024 IUPAC & De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. IUPAC Technical Reports
  4. Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
  5. Glossary of terms used in biochar research (IUPAC Technical Report)
  6. Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
  7. Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
  8. Milk protein polymorphisms of Aosta Valley cattle breeds
  9. Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
  10. Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
  11. Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
  12. Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
  13. Method development for multielement determination of halogens and sulfur in teas
  14. Regular Review Article
  15. A brief history of risk assessment for agrochemicals
  16. Regular Research Articles
  17. Capture of volatile iodine by aromatic amines solutions
  18. Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
  19. Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0219/html
Scroll to top button