Abstract
Layered double hydroxide (LDH) exhibits a remarkable trait referred to as the ‘memory effect,’ demonstrating its capacity to reconstruct its layered structure from calcined oxides through hydrothermal treatment. Its uniqueness has garnered significant interest from researchers in both industrial and academic domains. Various methods have been utilized to synthesize LDH but most LDH studies still utilize alkali precipitants which might taint the final LDH product. Thus, in this study, layered double hydroxides involving MgAl/NiAl/ZnAl were synthesized via an alkali-free hydrothermal approach in which the formed precipitates of LDH were thermally destroyed via calcination at 450 °C before undergoing a rehydration treatment at 110 °C for 24 h to restore its original structure. Particularly, the physiochemical properties of MgAl/NiAl/ZnAl LDH have been undertaken by multiple techniques such as Powder X-ray Diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR). The resultant products exhibited exceptional crystallinity, accompanied by notably larger crystallite sizes and crystallinity index, particularly post-hydrothermal treatment. Among the fresh and calcined products studied, those subjected to HTM (4:1) treatment demonstrated the highest specific surface area and crystallinity surpassing both the fresh and calcined samples. In essence, this research showcased how utilizing the hydrothermal approach resulted in the most substantial increase in crystallite size and specific surface area.
Funding source: Incentive Research Grant (GIP)
Award Identifier / Grant number: 600-RMC/GIP 5/3 (125/2023)
Acknowledgments
The author expresses gratitude for the generous assistance provided by the University of Technology MARA (UiTM) in conducting this research. The study was made possible through a grant awarded to NAT under the Incentive Research Grant (GIP) 600-RMC/GIP 5/3 (125/2023).
References
[1] G. Arrabito, R. Pezzilli, G. Prestopino, P. G. Medaglia. Crystals 10(7), 602 (2020), https://doi.org/10.3390/cryst10070602.Search in Google Scholar
[2] H. Sohrabi, A. Khataee, S. Ghasemzadeh, M. R. Majidi, Y. Orooji. Trends Environ. Anal. Chem. 31(June), e00139 (2021), https://doi.org/10.1016/j.teac.2021.e00139.Search in Google Scholar
[3] R. Botan, S. de Bona Sartor. Layered Double Hydroxide Polymer Nanocomposites, pp. 205–229, Woodhead Publishing, Sawston, UK (2020).10.1016/B978-0-08-101903-0.00005-2Search in Google Scholar
[4] L. Santamaría, S. A. Korili, A. Gil. Chem. Eng. J. 455(October 2022), 140551 (2023), https://doi.org/10.1016/j.cej.2022.140551.Search in Google Scholar
[5] N. A. Tajuddin, E. F. B. Sokeri, N. A. Kamal, M. Dib. J. Environ. Chem. Eng. 11(3), 110305 (2023), https://doi.org/10.1016/j.jece.2023.110305.Search in Google Scholar
[6] T. R. Timóteo, C. G. Melo, L. J. Danda, L. C. Silva, D. A. Fontes, P. C. Silva, C. S. Aguilera, L. da Siqueira, L. A. Rolim, P. J. Rolim Neto. Appl. Clay Sci. 180, 105197 (2019), https://doi.org/10.1016/j.clay.2019.105197.Search in Google Scholar
[7] Y. Zhang, H. Xu, S. Lu. Roy. Soc. Chem. 11, 24254 (2021), https://doi.org/10.1039/d1ra03289e.Search in Google Scholar PubMed PubMed Central
[8] N. A. Tajuddin, J. C. Manayil, A. F. Lee, K. Wilson. Catalysts 12(3), 286 (2022), https://doi.org/10.3390/catal12030286.Search in Google Scholar
[9] M. Raghuwanshi, A. Singh, B. Suryawanshi, Y. Jaiswal. Mater. Today Proc. (2023), https://doi.org/10.1016/j.matpr.2023.11.151.Search in Google Scholar
[10] M. V. Bukhtiyarova. J. Solid State Chem. 269, 494 (2019), https://doi.org/10.1016/j.jssc.2018.10.018.Search in Google Scholar
[11] A. Lozano-Lunar, R. Otero, J. I. Alvarez, J. R. Jimenez, M. Fernadez-Rodriguez. Appl. Clay Sci. 238(March), 1 (2023), https://doi.org/10.1016/j.clay.2023.106938.Search in Google Scholar
[12] H. Mkaddem, E. Rosales, M. Pazos, H. Ben Amor, M. A. Sanromán, J. Meijide. J. Mol. Liq. 359, 119207 (2022), https://doi.org/10.1016/j.molliq.2022.119207.Search in Google Scholar
[13] N. A. Tajuddin, R. Saleh, J. C. Manayil, M. Isaacs, C. M. A. Parlett, A. F. Lee, K. Wilson. Solid State Phenomena 290 SSP, 168 (2019), https://doi.org/10.4028/www.scientific.net/SSP.290.168.Search in Google Scholar
[14] M. Dib, H. Ouchetto, S. Akhramez, H. Fadili, A. Essoumhi, K. Ouchetto, A. Hafid, M. Sajieddine, M. Khouili. Mater. Today: Proc. 22, 104 (2020), https://doi.org/10.1016/j.matpr.2019.08.106.Search in Google Scholar
[15] M. Dib, M. N. Bennani, H. Ouchetto, K. Ouchetto, A. Hafid, M. Khouili. Curr. Nanomater. 7(1), 49 (2022), https://doi.org/10.2174/2405461506666210526145531.Search in Google Scholar
[16] S. Akhramez, Y. Achour, M. Dib, L. Bahsis, H. Ouchetto, A. Hafid, M. Khouili, M. El Haddad. Curr. Chem. Biol. 14(4), 240 (2021), https://doi.org/10.2174/2212796814999200918175018.Search in Google Scholar
[17] M. Zulkifli, N. H. Pungot, N. A. Tajuddin, M. F. F. M. Aluwi, N. S. Jumali, Z. Shaameri. Malays. J. Anal. Sci. 26(2), 191 (2022).Search in Google Scholar
[18] V. K. A. Shirin, R. Sankar, A. P. Johnson, H. V Gangadharappa, K. Pramod. J. Controlled Release 330(December 2020), 398 (2021), https://doi.org/10.1016/j.jconrel.2020.12.041.Search in Google Scholar PubMed
[19] M. Dib, M. Kacem, N. A. Tajuddin. Curr. Mater. Sci. 17 (2023), https://doi.org/10.2174/2666145417666230914104249.Search in Google Scholar
[20] J. Cui, Z. Li, G. Wang, J. Guo, M. Shao. J. Mater. Chem. A 8(45), 23738 (2020), https://doi.org/10.1039/d0ta08573a.Search in Google Scholar
[21] F. Chu, Z. Xu, X. Mu, W. Cai, X. Zhou, W. Hu, L. Song. Cellulose 27(6), 3485 (2020), https://doi.org/10.1007/s10570-020-03017-9.Search in Google Scholar
[22] J. Kameliya, A. Verma, P. Dutta, C. Arora, S. Vyas, R. S. Varma. Inorganics 11(3), 121 (2023), https://doi.org/10.3390/inorganics11030121.Search in Google Scholar
[23] D. Tichit, M. G. Álvarez. ChemEngineering 6(4), 45 (2022), https://doi.org/10.3390/chemengineering6040045.Search in Google Scholar
[24] B. M. Gama, R. Selvasembian, D. A. Giannakoudakis, K. S. Triantafyllidis, G. McKay, L. Meili. Molecules 27(15), 4900 (2022), https://doi.org/10.3390/molecules27154900.Search in Google Scholar PubMed PubMed Central
[25] R. Benhiti, A. Ait Ichou, A. Zaghloul, R. Aziam, G. Carja, M. Zerbet, F. Sinan, M. Chiban. Environ. Sci. Pollut. Res. 27(36), 45767 (2020), https://doi.org/10.1007/s11356-020-10444-5.Search in Google Scholar PubMed
[26] E. H. Ibrahim, N. A. Tajuddin, N. Hamzah. Int. J. Eng. Technol. 7(4.14), 154 (2018), https://doi.org/10.14419/ijet.v7i4.14.27518.Search in Google Scholar
[27] N. Tajuddin, J. Manayil, M. Isaacs, C. Parlett, A. Lee, K. Wilson. Catalysts 8(12), 667 (2018), https://doi.org/10.3390/catal8120667.Search in Google Scholar
[28] Y. Qin, C. Qu, C. Ma, L. Zhou. Polymers 14(22), 5046 (2022), https://doi.org/10.3390/polym14225046.Search in Google Scholar PubMed PubMed Central
[29] G. Alzhrani, N. S. Ahmed, E. S. Aazam, T. S. Saleh, M. Mokhtar. ChemistrySelect 4(27), 7904 (2019), https://doi.org/10.1002/slct.201900890.Search in Google Scholar
[30] D. Brahma, H. Saikia. Chem. Thermodyn. Therm. Anal. 7, 100067 (2022), https://doi.org/10.1016/j.ctta.2022.100067.Search in Google Scholar
[31] L. D. S. Neto, C. G. Anchieta, J. L. S. Duarte, L. Meili, J. T. Freire. ACS Omega 6(33), 21819 (2021), https://doi.org/10.1021/acsomega.1c03581.Search in Google Scholar PubMed PubMed Central
[32] L.-X. Li, Z.-H. Xie, C. Fernandez, L. Wu, D. Cheng, X.-H. Jiang, C.-J. Zhong. Electrochim. Acta 330, 135186 (2020), https://doi.org/10.1016/j.electacta.2019.135186.Search in Google Scholar
[33] T. Saravanakumar, S. Sathiya Bama, S. T, S. J. Sardhar Basha. Electrochim. Acta 392, 139029 (2021), https://doi.org/10.1016/j.electacta.2021.139029.Search in Google Scholar
[34] B. G. P. Bezerra, L. Bieseki, M. I. S. de Mello, D. R. da Silva, C. B. Rodella, S. Pergher. Materials 14(9), 2102 (2021), https://doi.org/10.3390/ma14092102.Search in Google Scholar PubMed PubMed Central
[35] M. R. Sayed, M. R. Abukhadra, S. Abdelkader Ahmed, M. Shaban, U. Javed, M. A. Betiha, J. J. Shim, A. M. Rabie. Fuel 282(May), 118865 (2020), https://doi.org/10.1016/j.fuel.2020.118865.Search in Google Scholar
[36] C. Gomes, Z. Mir, R. Sampaio, A. Bastos, J. Tedim, F. Maia, C. Rocha, M. Ferreira. Materials 13(7), 1769 (2020), https://doi.org/10.3390/ma13071769.Search in Google Scholar PubMed PubMed Central
[37] A. Rahman, V. Srirama, R. Pullabhotla. Bull. Chem. React. Eng. Catal. 17(1), 163 (2022), https://doi.org/10.9767/bcrec.17.1.12195.163-193.Search in Google Scholar
[38] F. H. A. Al-ogaili, F. H. M Almahdawi. J. Surv. Fish. Sci. 10, 2938 (2023).Search in Google Scholar
[39] V. Sharma, J. K. Sharma, V. Kansay, V. D. Sharma, A. Sharma, S. Kumar, A. K. Sharma, M. K. Bera. Chem. Phys. Impact 6, 100196 (2023), https://doi.org/10.1016/j.chphi.2023.100196.Search in Google Scholar
[40] A. El khanchaoui, M. Sajieddine, M. Ounacer, A. Fnidiki, F. Richomme, J. Juraszek, M. Mansori, M. Dib, A. Essoumhi. Appl. Phys. A 128(5), 406 (2022), https://doi.org/10.1007/s00339-022-05547-4.Search in Google Scholar
[41] A. M. Alazemi, K. M. Dawood, H. M. Al-Matar, W. M. Tohamy. ACS Omega 7(33), 28831 (2022), https://doi.org/10.1021/acsomega.2c01809.Search in Google Scholar PubMed PubMed Central
[42] B. Raimundo, D. Kino, N. Kitgawa, Y. Tokudome, C. D. Nunes. Appl. Clay Sci. 239, 106948 (2023), https://doi.org/10.1016/j.clay.2023.106948.Search in Google Scholar
[43] A. Zaghloul, R. Benhiti, A. Ait Ichou, G. Carja, A. Soudani, M. Zerbet, F. Sinan, M. Chiban. Mater. Today: Proc. 37, 3793 (2021), https://doi.org/10.1016/j.matpr.2020.07.676.Search in Google Scholar
[44] R. A. M. Agus, S. K. Deraman, N. A. Tajuddin. Sci. Lett. 15(1), 82 (2021), https://doi.org/10.24191/sl.v15i1.11797.Search in Google Scholar
[45] A. Johnston, E. Lester, O. Williams, R. L. Gomes. J. Environ. Chem. Eng. 9(4), 105197 (2021), https://doi.org/10.1016/j.jece.2021.105197.Search in Google Scholar
[46] Z. Xu, X. Wu, S. Cai, T. Zhong, J. Xu, W. Luo, Y. Guan. Int. J. Electrochem. Sci. 17(8), 220812 (2022), https://doi.org/10.20964/2022.08.25.Search in Google Scholar
[47] Y. Cao, S. Fang, K. Chen, H. Qi, X. Zhang, C. Huang, J. Wang, J. Liu. Appl. Sci. 12(9), 4492 (2022), https://doi.org/10.3390/app12094492.Search in Google Scholar
[48] C. Miao, T. Hui, Y. Liu, J. Feng, D. Li. J. Catal. 370, 107 (2019), https://doi.org/10.1016/j.jcat.2018.12.006.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0014).
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- IUPAC Technical Reports
- Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
- Glossary of terms used in biochar research (IUPAC Technical Report)
- Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
- Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
- Milk protein polymorphisms of Aosta Valley cattle breeds
- Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
- Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
- Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
- Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
- Method development for multielement determination of halogens and sulfur in teas
- Regular Review Article
- A brief history of risk assessment for agrochemicals
- Regular Research Articles
- Capture of volatile iodine by aromatic amines solutions
- Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
- Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids
Articles in the same Issue
- Frontmatter
- In this issue
- IUPAC Technical Reports
- Terms of Latin origin relating to sample characterization (IUPAC Technical Report)
- Glossary of terms used in biochar research (IUPAC Technical Report)
- Properties and units in the clinical laboratory sciences. Part XXVIII. NPU codes for characterizing subpopulations of the hematopoietic lineage, described from their clusters of differentiation molecules (IUPAC Technical Report)
- Special Topic: Mass spectrometry congress in Italy – MASSA 2023l; Guest Editor: Giuliana Bianco
- Milk protein polymorphisms of Aosta Valley cattle breeds
- Capabilities and drawbacks of mass spectrometry in the forensic field: analysis of real cases dealing with toxicology and explosives
- Mapping the distribution of bioactive compounds and aroma/flavour precursors in green coffee beans with an integrated mass spectrometry-based approach
- Fire fighters and mass spectrometry: from the world of combustion to the molecular ion
- Special Topic: IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards 2023; Guest Editor: Mary J. Garson
- Method development for multielement determination of halogens and sulfur in teas
- Regular Review Article
- A brief history of risk assessment for agrochemicals
- Regular Research Articles
- Capture of volatile iodine by aromatic amines solutions
- Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison
- Production of oil palm mesocarp fiber-based hydrogel using selected cross-linking acids