Startseite Naturwissenschaften On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century

  • Adriana Šturcová EMAIL logo
Veröffentlicht/Copyright: 2. Juli 2021

Abstract

This contribution attempts to describe the path towards determination of cellulose crystal structure down to atomic coordinates, towards the determination of its molecular conformation, as well as towards the details of the intricate pattern of hydrogen bonds and their dynamics. This path started at the beginning of the 20th century with X-ray diffraction, continued with electron diffraction, infrared and Raman spectroscopy, and significant knowledge was gained by methods of NMR spectroscopy. Towards the end of the 20th century and at the beginning of the 21st century, X-ray diffraction in conjunction with neutron diffraction provided the position of hydrogens, which led to detailed description of the geometry of hydrogen bonding network in cellulose. Quantum chemical and molecular dynamics calculations, polarized infrared spectroscopy and sum frequency generation vibrational spectroscopy were used to identify the origins of the vibrational modes in cellulose and to describe their extensive coupling mediated by hydrogen bonds. The role of amphiphilic character of cellulose macromolecule (and consequent hydrophobic interactions) in cellulose properties and behavior has been gaining more recognition in the 21st century.


Corresponding author: Adriana Šturcová, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic, e-mail:

Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.


Funding source: Institutional Support

Award Identifier / Grant number: RVO 61389013

References

[1] O. M. Astley, E. Chanliaud, A. M. Donald, M. J. Gidley. Int. J. Biol. Macromol. 29, 193 (2001), https://doi.org/10.1016/s0141-8130(01)00167-2.Suche in Google Scholar

[2] A. Šturcová, I. His, D. C. Apperley, J. Sugiyama, M. C. Jarvis. Biomacromolecules 5, 1333 (2004).10.1021/bm034517pSuche in Google Scholar PubMed

[3] N. C. Carpita, D. M. Gibeaut. Plant J. 3, 1 (1993), https://doi.org/10.1111/j.1365-313x.1993.tb00007.x.Suche in Google Scholar PubMed

[4] C. T. Brett, K. W. Waldron. Physiology and Biochemistry of Plant Cell Walls, Chapman & Hall, London, 2nd ed. (1996).Suche in Google Scholar

[5] A. Šturcová, G. R. Davies, S. J. Eichhorn. Biomacromolecules 6, 1055 (2005).10.1021/bm049291kSuche in Google Scholar PubMed

[6] R. Rinaldi. Chem. Commun. 47, 511 (2011), https://doi.org/10.1039/c0cc02421j.Suche in Google Scholar PubMed

[7] C. M. Lee, J. D. Kubicki, B. Fan, L. Zhong, M. C. Jarvis, S. H. Kim. J. Phys. Chem. B 119, 15138 (2015), https://doi.org/10.1021/acs.jpcb.5b08015.Suche in Google Scholar PubMed

[8] R. J. Viëtor, R. H. Newman, M.-A. Ha, D. C. Apperley, M. C. Jarvis. Plant J. 30, 721 (2002), https://doi.org/10.1046/j.1365-313x.2002.01327.x.Suche in Google Scholar PubMed

[9] D. L. VanderHart, R. H. Atalla. Macromolecules 17, 1465 (1984), https://doi.org/10.1021/ma00138a009.Suche in Google Scholar

[10] Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan. J. Am. Chem. Soc. 125, 14300 (2003), https://doi.org/10.1021/ja037055w.Suche in Google Scholar PubMed

[11] Y. Nishiyama, P. Langan, H. Chanzy. J. Am. Chem. Soc. 124, 9074 (2002), https://doi.org/10.1021/ja0257319.Suche in Google Scholar PubMed

[12] X. Qian, S.-Y. Ding, M. R. Nimlos, D. K. Johnson, M. E. Himmel. Macromolecules 38, 10580 (2005), https://doi.org/10.1021/ma051683b.Suche in Google Scholar

[13] A. D. French, M. Concha, M. K. Dowd, E. D. Stevens. Cellulose 21, 1051 (2014), https://doi.org/10.1007/s10570-013-0042-0.Suche in Google Scholar

[14] M. C. Jarvis. Carbohydr. Res. 325, 150 (2000), https://doi.org/10.1016/s0008-6215(99)00316-x.Suche in Google Scholar

[15] B. Lindman, B. Medronho, A. Romano, M. G. Miguel, L. Stigsson. Cellulose 19, 581 (2012).10.1007/s10570-011-9644-6Suche in Google Scholar

[16] P. Langan, Y. Nishiyama, H. Chanzy. Biomacromolecules 2, 410 (2001), https://doi.org/10.1021/bm005612q.Suche in Google Scholar PubMed

[17] P. Zugenmaier. Carbohydr. Polym. 254, 117417 (2021).10.1016/j.carbpol.2020.117417Suche in Google Scholar PubMed

[18] S. Nishikawa, S. Ono. Proc. Tokyo Math. Phys. Soc. 7, 131 (1913).Suche in Google Scholar

[19] A. W. Hull. Phys. Rev. 10, 661 (1917), https://doi.org/10.1103/physrev.10.661.Suche in Google Scholar

[20] P. H. Hermans. Physics and Chemistry of Cellulose Fibres, p. 5, Elsevier, New York (1949).Suche in Google Scholar

[21] P. Scherrer. In private communication to H. Ambronn in 1919 as described by P. H. Hermans Physics and Chemistry of Cellulose Fibres, p. 5, Elsevier, New York (1949).Suche in Google Scholar

[22] K. H. Meyer, H. Mark. Ber. Dtsch. Chem. Ges. 61, 593 (1928), https://doi.org/10.1002/cber.19280610402.Suche in Google Scholar

[23] K. H. Meyer, L. Misch. Helv. Chim. Acta 20, 232 (1937), https://doi.org/10.1002/hlca.19370200134.Suche in Google Scholar

[24] G. Honjo, M. Watanabe. Nature 181, 326 (1958), https://doi.org/10.1038/181326a0.Suche in Google Scholar

[25] H. J. Marrinan, J. Mann. J. Polym. Sci. 21, 301 (1956), https://doi.org/10.1002/pol.1956.120219812.Suche in Google Scholar

[26] J. Mann, H. J. Marrinan. J. Polym. Sci. 32, 357 (1958), https://doi.org/10.1002/pol.1958.1203212507.Suche in Google Scholar

[27] C. Y. Liang, R. H. Marchessault. J. Polym. Sci. 37, 385 (1959), https://doi.org/10.1002/pol.1959.1203713209.Suche in Google Scholar

[28] A. Sarko, R. Muggli. Macromolecules 7, 486 (1974), https://doi.org/10.1021/ma60040a016.Suche in Google Scholar

[29] K. H. Gardner, J. Blackwell. Biopolymers 13, 1975 (1974), https://doi.org/10.1002/bip.1974.360131005.Suche in Google Scholar

[30] A. D. French, P. S. Howley. in Cellulose and Wood, Chemistry and Technology, C. Schuerch (Ed.), pp. 159–167, Wiley, New York (1989).Suche in Google Scholar

[31] M. Koyama, W. Helbert, T. Imai, J. Sugiyama, B. Henrissat. Proc. Natl. Acad. Sci. U.S.A. 94, 9091 (1997), https://doi.org/10.1073/pnas.94.17.9091.Suche in Google Scholar

[32] P. S. Belton, S. F. Tanner, N. Cartier, H. Chanzy. Macromolecules 22, 1615 (1989), https://doi.org/10.1021/ma00194a019.Suche in Google Scholar

[33] H. Chanzy, B. Henrissat, M. Vincendon, S. F. Tanner, P. S. Belton. Carbohydr. Res. 160, 1 (1987), https://doi.org/10.1016/0008-6215(87)80299-9.Suche in Google Scholar

[34] A. Hirai, F. Horii, R. Kitamaru. Macromolecules 20, 1440 (1987), https://doi.org/10.1021/ma00172a057.Suche in Google Scholar

[35] F. Horii, H. Yamamoto, R. Kitamura, M. Tanahashi, T. Higuchi. Macromolecules 20, 2946 (1987), https://doi.org/10.1021/ma00177a052.Suche in Google Scholar

[36] H. Yamamoto, F. Horii, H. Odani. Macromolecules 22, 4132 (1989), https://doi.org/10.1021/ma00200a058.Suche in Google Scholar

[37] J. Sugiyama, T. Okano, H. Yamamoto, F. Horii. Macromolecules 23, 3198 (1990), https://doi.org/10.1021/ma00214a029.Suche in Google Scholar

[38] A. Michell. Carbohydr. Res. 197, 53 (1990), https://doi.org/10.1016/0008-6215(90)84129-i.Suche in Google Scholar

[39] A. Michell. Carbohydr. Res. 241, 47 (1993), https://doi.org/10.1016/0008-6215(93)80093-t.Suche in Google Scholar

[40] J. Sugiyama, J. Persson, H. Chanzy. Macromolecules 24, 2461 (1991), https://doi.org/10.1021/ma00009a050.Suche in Google Scholar

[41] J. Sugiyama, R. Vuong, H. Chanzy. Macromolecules 24, 4168 (1991), https://doi.org/10.1021/ma00014a033.Suche in Google Scholar

[42] H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata, M. Takai. J. Am. Chem. Soc. 124, 7506 (2002), https://doi.org/10.1021/ja010704o.Suche in Google Scholar

[43] N. Ivanova, E. Korolenko, E. Korolik, R. Zhbankov. J. Appl. Spectrosc. 51, 847 (1989), https://doi.org/10.1007/bf00659967.Suche in Google Scholar

[44] Y. Maréchal, H. Chanzy. J. Mol. Struct. 523, 183 (2000), https://doi.org/10.1016/s0022-2860(99)00389-0.Suche in Google Scholar

[45] P. Langan, Y. Nishiyama, H. Chanzy. J. Am. Chem. Soc. 121, 9940 (1999), https://doi.org/10.1021/ja9916254.Suche in Google Scholar

[46] A. Šturcová, I. His, T. J. Wess, G. Cameron, M. C. Jarvis. Biomacromolecules 4, 1589 (2003).10.1021/bm034295vSuche in Google Scholar PubMed

[47] J. Yang, L. A. Christianson, S. H. Gellman. Org. Lett. 1, 11 (1999), https://doi.org/10.1021/ol9900010.Suche in Google Scholar

[48] J. Yang, S. H. Gellman. J. Am. Chem. Soc. 120, 9090 (1998), https://doi.org/10.1021/ja981604u.Suche in Google Scholar

[49] D. A. Braden, G. L. Gard, T. J. R. Weakley. Inorg. Chem. 35, 1912 (1996), https://doi.org/10.1021/ic951315w.Suche in Google Scholar

[50] E. S. Feldblum, I. T. Arkin. Proc. Natl. Acad. Sci. Unit. States Am. 111, 4085 (2014), https://doi.org/10.1073/pnas.1319827111.Suche in Google Scholar PubMed PubMed Central

[51] P. Yang, P. P. N. Murthy, R. E. Brown. J. Am. Chem. Soc. 127, 15848 (2005), https://doi.org/10.1021/ja053371u.Suche in Google Scholar PubMed

[52] J. T. Ham, D. G. Williams. Acta Crystallogr. B26, 1373 (1970), https://doi.org/10.1107/s0567740870004132.Suche in Google Scholar

[53] W. G. Glasser, R. H. Atalla, J. Blackwell, R. M. BrownJr., W. Burchard, A. D. French, D. O. Klemm, Y. Nishiyama. Cellulose 19, 589 (2012), https://doi.org/10.1007/s10570-012-9691-7.Suche in Google Scholar

[54] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, S. Gnanakaran. J. Phys. Chem. 115, 14191 (2011), https://doi.org/10.1021/jp203620x.Suche in Google Scholar PubMed

Published Online: 2021-07-02
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0306/html?lang=de
Button zum nach oben scrollen