Abstract
This contribution attempts to describe the path towards determination of cellulose crystal structure down to atomic coordinates, towards the determination of its molecular conformation, as well as towards the details of the intricate pattern of hydrogen bonds and their dynamics. This path started at the beginning of the 20th century with X-ray diffraction, continued with electron diffraction, infrared and Raman spectroscopy, and significant knowledge was gained by methods of NMR spectroscopy. Towards the end of the 20th century and at the beginning of the 21st century, X-ray diffraction in conjunction with neutron diffraction provided the position of hydrogens, which led to detailed description of the geometry of hydrogen bonding network in cellulose. Quantum chemical and molecular dynamics calculations, polarized infrared spectroscopy and sum frequency generation vibrational spectroscopy were used to identify the origins of the vibrational modes in cellulose and to describe their extensive coupling mediated by hydrogen bonds. The role of amphiphilic character of cellulose macromolecule (and consequent hydrophobic interactions) in cellulose properties and behavior has been gaining more recognition in the 21st century.
Funding source: Institutional Support
Award Identifier / Grant number: RVO 61389013
References
[1] O. M. Astley, E. Chanliaud, A. M. Donald, M. J. Gidley. Int. J. Biol. Macromol. 29, 193 (2001), https://doi.org/10.1016/s0141-8130(01)00167-2.Suche in Google Scholar
[2] A. Šturcová, I. His, D. C. Apperley, J. Sugiyama, M. C. Jarvis. Biomacromolecules 5, 1333 (2004).10.1021/bm034517pSuche in Google Scholar PubMed
[3] N. C. Carpita, D. M. Gibeaut. Plant J. 3, 1 (1993), https://doi.org/10.1111/j.1365-313x.1993.tb00007.x.Suche in Google Scholar PubMed
[4] C. T. Brett, K. W. Waldron. Physiology and Biochemistry of Plant Cell Walls, Chapman & Hall, London, 2nd ed. (1996).Suche in Google Scholar
[5] A. Šturcová, G. R. Davies, S. J. Eichhorn. Biomacromolecules 6, 1055 (2005).10.1021/bm049291kSuche in Google Scholar PubMed
[6] R. Rinaldi. Chem. Commun. 47, 511 (2011), https://doi.org/10.1039/c0cc02421j.Suche in Google Scholar PubMed
[7] C. M. Lee, J. D. Kubicki, B. Fan, L. Zhong, M. C. Jarvis, S. H. Kim. J. Phys. Chem. B 119, 15138 (2015), https://doi.org/10.1021/acs.jpcb.5b08015.Suche in Google Scholar PubMed
[8] R. J. Viëtor, R. H. Newman, M.-A. Ha, D. C. Apperley, M. C. Jarvis. Plant J. 30, 721 (2002), https://doi.org/10.1046/j.1365-313x.2002.01327.x.Suche in Google Scholar PubMed
[9] D. L. VanderHart, R. H. Atalla. Macromolecules 17, 1465 (1984), https://doi.org/10.1021/ma00138a009.Suche in Google Scholar
[10] Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan. J. Am. Chem. Soc. 125, 14300 (2003), https://doi.org/10.1021/ja037055w.Suche in Google Scholar PubMed
[11] Y. Nishiyama, P. Langan, H. Chanzy. J. Am. Chem. Soc. 124, 9074 (2002), https://doi.org/10.1021/ja0257319.Suche in Google Scholar PubMed
[12] X. Qian, S.-Y. Ding, M. R. Nimlos, D. K. Johnson, M. E. Himmel. Macromolecules 38, 10580 (2005), https://doi.org/10.1021/ma051683b.Suche in Google Scholar
[13] A. D. French, M. Concha, M. K. Dowd, E. D. Stevens. Cellulose 21, 1051 (2014), https://doi.org/10.1007/s10570-013-0042-0.Suche in Google Scholar
[14] M. C. Jarvis. Carbohydr. Res. 325, 150 (2000), https://doi.org/10.1016/s0008-6215(99)00316-x.Suche in Google Scholar
[15] B. Lindman, B. Medronho, A. Romano, M. G. Miguel, L. Stigsson. Cellulose 19, 581 (2012).10.1007/s10570-011-9644-6Suche in Google Scholar
[16] P. Langan, Y. Nishiyama, H. Chanzy. Biomacromolecules 2, 410 (2001), https://doi.org/10.1021/bm005612q.Suche in Google Scholar PubMed
[17] P. Zugenmaier. Carbohydr. Polym. 254, 117417 (2021).10.1016/j.carbpol.2020.117417Suche in Google Scholar PubMed
[18] S. Nishikawa, S. Ono. Proc. Tokyo Math. Phys. Soc. 7, 131 (1913).Suche in Google Scholar
[19] A. W. Hull. Phys. Rev. 10, 661 (1917), https://doi.org/10.1103/physrev.10.661.Suche in Google Scholar
[20] P. H. Hermans. Physics and Chemistry of Cellulose Fibres, p. 5, Elsevier, New York (1949).Suche in Google Scholar
[21] P. Scherrer. In private communication to H. Ambronn in 1919 as described by P. H. Hermans Physics and Chemistry of Cellulose Fibres, p. 5, Elsevier, New York (1949).Suche in Google Scholar
[22] K. H. Meyer, H. Mark. Ber. Dtsch. Chem. Ges. 61, 593 (1928), https://doi.org/10.1002/cber.19280610402.Suche in Google Scholar
[23] K. H. Meyer, L. Misch. Helv. Chim. Acta 20, 232 (1937), https://doi.org/10.1002/hlca.19370200134.Suche in Google Scholar
[24] G. Honjo, M. Watanabe. Nature 181, 326 (1958), https://doi.org/10.1038/181326a0.Suche in Google Scholar
[25] H. J. Marrinan, J. Mann. J. Polym. Sci. 21, 301 (1956), https://doi.org/10.1002/pol.1956.120219812.Suche in Google Scholar
[26] J. Mann, H. J. Marrinan. J. Polym. Sci. 32, 357 (1958), https://doi.org/10.1002/pol.1958.1203212507.Suche in Google Scholar
[27] C. Y. Liang, R. H. Marchessault. J. Polym. Sci. 37, 385 (1959), https://doi.org/10.1002/pol.1959.1203713209.Suche in Google Scholar
[28] A. Sarko, R. Muggli. Macromolecules 7, 486 (1974), https://doi.org/10.1021/ma60040a016.Suche in Google Scholar
[29] K. H. Gardner, J. Blackwell. Biopolymers 13, 1975 (1974), https://doi.org/10.1002/bip.1974.360131005.Suche in Google Scholar
[30] A. D. French, P. S. Howley. in Cellulose and Wood, Chemistry and Technology, C. Schuerch (Ed.), pp. 159–167, Wiley, New York (1989).Suche in Google Scholar
[31] M. Koyama, W. Helbert, T. Imai, J. Sugiyama, B. Henrissat. Proc. Natl. Acad. Sci. U.S.A. 94, 9091 (1997), https://doi.org/10.1073/pnas.94.17.9091.Suche in Google Scholar
[32] P. S. Belton, S. F. Tanner, N. Cartier, H. Chanzy. Macromolecules 22, 1615 (1989), https://doi.org/10.1021/ma00194a019.Suche in Google Scholar
[33] H. Chanzy, B. Henrissat, M. Vincendon, S. F. Tanner, P. S. Belton. Carbohydr. Res. 160, 1 (1987), https://doi.org/10.1016/0008-6215(87)80299-9.Suche in Google Scholar
[34] A. Hirai, F. Horii, R. Kitamaru. Macromolecules 20, 1440 (1987), https://doi.org/10.1021/ma00172a057.Suche in Google Scholar
[35] F. Horii, H. Yamamoto, R. Kitamura, M. Tanahashi, T. Higuchi. Macromolecules 20, 2946 (1987), https://doi.org/10.1021/ma00177a052.Suche in Google Scholar
[36] H. Yamamoto, F. Horii, H. Odani. Macromolecules 22, 4132 (1989), https://doi.org/10.1021/ma00200a058.Suche in Google Scholar
[37] J. Sugiyama, T. Okano, H. Yamamoto, F. Horii. Macromolecules 23, 3198 (1990), https://doi.org/10.1021/ma00214a029.Suche in Google Scholar
[38] A. Michell. Carbohydr. Res. 197, 53 (1990), https://doi.org/10.1016/0008-6215(90)84129-i.Suche in Google Scholar
[39] A. Michell. Carbohydr. Res. 241, 47 (1993), https://doi.org/10.1016/0008-6215(93)80093-t.Suche in Google Scholar
[40] J. Sugiyama, J. Persson, H. Chanzy. Macromolecules 24, 2461 (1991), https://doi.org/10.1021/ma00009a050.Suche in Google Scholar
[41] J. Sugiyama, R. Vuong, H. Chanzy. Macromolecules 24, 4168 (1991), https://doi.org/10.1021/ma00014a033.Suche in Google Scholar
[42] H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata, M. Takai. J. Am. Chem. Soc. 124, 7506 (2002), https://doi.org/10.1021/ja010704o.Suche in Google Scholar
[43] N. Ivanova, E. Korolenko, E. Korolik, R. Zhbankov. J. Appl. Spectrosc. 51, 847 (1989), https://doi.org/10.1007/bf00659967.Suche in Google Scholar
[44] Y. Maréchal, H. Chanzy. J. Mol. Struct. 523, 183 (2000), https://doi.org/10.1016/s0022-2860(99)00389-0.Suche in Google Scholar
[45] P. Langan, Y. Nishiyama, H. Chanzy. J. Am. Chem. Soc. 121, 9940 (1999), https://doi.org/10.1021/ja9916254.Suche in Google Scholar
[46] A. Šturcová, I. His, T. J. Wess, G. Cameron, M. C. Jarvis. Biomacromolecules 4, 1589 (2003).10.1021/bm034295vSuche in Google Scholar PubMed
[47] J. Yang, L. A. Christianson, S. H. Gellman. Org. Lett. 1, 11 (1999), https://doi.org/10.1021/ol9900010.Suche in Google Scholar
[48] J. Yang, S. H. Gellman. J. Am. Chem. Soc. 120, 9090 (1998), https://doi.org/10.1021/ja981604u.Suche in Google Scholar
[49] D. A. Braden, G. L. Gard, T. J. R. Weakley. Inorg. Chem. 35, 1912 (1996), https://doi.org/10.1021/ic951315w.Suche in Google Scholar
[50] E. S. Feldblum, I. T. Arkin. Proc. Natl. Acad. Sci. Unit. States Am. 111, 4085 (2014), https://doi.org/10.1073/pnas.1319827111.Suche in Google Scholar PubMed PubMed Central
[51] P. Yang, P. P. N. Murthy, R. E. Brown. J. Am. Chem. Soc. 127, 15848 (2005), https://doi.org/10.1021/ja053371u.Suche in Google Scholar PubMed
[52] J. T. Ham, D. G. Williams. Acta Crystallogr. B26, 1373 (1970), https://doi.org/10.1107/s0567740870004132.Suche in Google Scholar
[53] W. G. Glasser, R. H. Atalla, J. Blackwell, R. M. BrownJr., W. Burchard, A. D. French, D. O. Klemm, Y. Nishiyama. Cellulose 19, 589 (2012), https://doi.org/10.1007/s10570-012-9691-7.Suche in Google Scholar
[54] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, S. Gnanakaran. J. Phys. Chem. 115, 14191 (2011), https://doi.org/10.1021/jp203620x.Suche in Google Scholar PubMed
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities