Startseite Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems

  • Nurul Fatahah Asyqin Zainal , Hairunnisa Ramli , Margarethe Fritz , Volker Abetz ORCID logo und Chin Han Chan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. August 2021

Abstract

The influence of thermal treatment on the thermal stability, thermal properties, dielectric properties and intermolecular interaction of binary epoxidized natural rubber (ENR)-salt systems, which may be a candidate for solid polymer electrolytes (SPEs) was investigated. Solubility of salt in ENR enhances, which may be due to the disruption of the lightly-crosslinked microgel under heat treatment. The increase in the ionic conductivities of the thermally treated ENR SPEs at constant salt content is correlated to the higher glass transition temperatures, development of percolation network and higher extent of intermolecular interactions between ENR and charged entities in this study.


Corresponding author: Chin Han Chan, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, e-mail:

Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.


Funding source: Ministry of Education Malaysia

Award Identifier / Grant number: 600-RMI/RAGS 5/3 (145/2014)

Acknowledgements

The authors would like to thank Ms. Nurul Syahidah Hussin for the FTIR, TGA, DSC and IS experimental data.

  1. Research funding: The paper was supported by the Ministry of Education Malaysia under the project of Research Acculturation Grant Scheme (RAGS) (600-RMI/RAGS 5/3 (145/2014)) grant.

References

[1] M. Ravanbakhsh, S. N. Khorasani, S. Khalili. J. Elastomers Plastics 48, 394 (2016), https://doi.org/10.1177/0095244315580453.Suche in Google Scholar

[2] I. R. Gelling, M. Porter, A. D. Roberts. in Natural Rubber Science and Technology, A. D. Roberts (Ed.), Oxford University Press, New York (1988).Suche in Google Scholar

[3] R. M. Jorge, L. Lopes, M. R. Benzi, M. T. Ferreira, A. S. Gomes, R. C. R. Nunes. Int. J. Polym. Mater. Polym. Biomater. 59, 330 (2010), https://doi.org/10.1080/00914030903478891.Suche in Google Scholar

[4] T. Saito, W. Klinklai, S. Kawahara. Polymer 48, 750 (2007), https://doi.org/10.1016/j.polymer.2006.12.001.Suche in Google Scholar

[5] I. M. Alwaan, A. Hassan, M. A. M. Piah. Iran. Polym. J. (Engl. Ed.) 24, 279 (2015), https://doi.org/10.1007/s13726-015-0319-2.Suche in Google Scholar

[6] K. Ab-Malek, H. R. Ahmadi, A. H. Muhr, I. J. Stephens, J. Gough, J. K. Picken, L. J. Jun, M. U. Zulkefli, I. M. Taib. 15th World Conf. Earthq. Eng. 1 (2012).Suche in Google Scholar

[7] H. A. M. Hanif, K. C. Yong. MRB Rubber Technol. Dev. 18, 49 (2018).Suche in Google Scholar

[8] R. C. Ali, A. Mustafa, F. R. M. Rasdi. MRB Rubber Technol. Dev. 18, 30 (2018).Suche in Google Scholar

[9] I. R. Gelling. Rubber Chem. Technol. 58, 86 (1985), https://doi.org/10.5254/1.3536060.Suche in Google Scholar

[10] I. R. Gelling. J. Nat. Rubber Res. 6, 184 (1991), https://doi.org/10.7748/ns.6.3.55.s65.Suche in Google Scholar

[11] C. S. L. Baker, I. R. Gelling, R. Newell. Rubber Chem. Technol. 58, 67 (1985), https://doi.org/10.5254/1.3536059.Suche in Google Scholar

[12] A. S. Hashim, S. K. Ong. in Elastomers, N. Cankaya (Ed.), pp. 159–187, InTech, Rijeka, Croatia (2017).Suche in Google Scholar

[13] T. Johnson, S. Thomas. Polymer 40, 3223 (1999), https://doi.org/10.1016/s0032-3861(98)00528-x.Suche in Google Scholar

[14] R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy, A. S. Deuri. Polym. Eng. Sci. 47, 21 (2007), https://doi.org/10.1002/pen.20921.Suche in Google Scholar

[15] T. Johnson, S. Thomas. Polymer 41, 7511 (2000), https://doi.org/10.1016/s0032-3861(00)00076-8.Suche in Google Scholar

[16] J. E. Davey, M. J. R. Loadman. Br. Polym. J. 16, 134 (1984), https://doi.org/10.1002/pi.4980160305.Suche in Google Scholar

[17] K. Sae-heng, T. Kanya, N. Choothong, K. Kosugi, W. Ariyawiriyanan, S. Kawahara. Polym. Adv. Technol. 28, 1156 (2017), https://doi.org/10.1002/pat.4008.Suche in Google Scholar

[18] J. Tangpakdee, Y. Tanaka. Rubber Chem. Technol. 70, 707 (1997), https://doi.org/10.5254/1.3538454.Suche in Google Scholar

[19] H. Yu, Z. Zeng, G. Lu, Q. Wang. Eur. Polym. J. 44, 453 (2008), https://doi.org/10.1016/j.eurpolymj.2007.11.016.Suche in Google Scholar

[20] P. W. Allen, G. M. Bristow. Rubber Chem. Technol. 36, 1024 (1963), https://doi.org/10.5254/1.3539624.Suche in Google Scholar

[21] A. H. Eng, Y. Tanaka, S. N. Gan. J. Nat. Rubber Res. 12, 82 (1997).Suche in Google Scholar

[22] E. E. Ehabe, F. Bonfils, J. Sainte-Beuve, A. Collet, F. Schue. Polym. Eng. Sci. 46, 222 (2006), https://doi.org/10.1002/pen.20433.Suche in Google Scholar

[23] S. Rolere, C. Bottier, L. Vaysse, F. Bonfils. Express Polym. Lett. 10, 408 (2016), https://doi.org/10.3144/expresspolymlett.2016.38.Suche in Google Scholar

[24] D. Mekkriengkrai, J. T. Sakdapipanich, Y. Tanaka. Rubber Chem. Technol. 79, 366 (2006), https://doi.org/10.5254/1.3547942.Suche in Google Scholar

[25] Y. Tanaka, L. Tarachiwin. Rubber Chem. Technol. 82, 283 (2009), https://doi.org/10.5254/1.3548250.Suche in Google Scholar

[26] S. Amnuaypornsri, J. Sakdapipanich, S. Toki, B. S. Hsiao, N. Ichikawa, Y. Tanaka. Rubber Chem. Technol. 81, 753 (2008), https://doi.org/10.5254/1.3548230.Suche in Google Scholar

[27] S. Rolere, C. Cazevieille, J. Sainte-Beuve, F. Bonfils. Eur. Polym. J. 80, 117 (2016), https://doi.org/10.1016/j.eurpolymj.2016.05.008.Suche in Google Scholar

[28] A. Nimpaiboon, S. Amnuaypornsri, J. Sakdapipanich. Polym. Morphol. Princ. Charact. Process. 32, 1135 (2013), https://doi.org/10.1016/j.polymertesting.2013.07.003.Suche in Google Scholar

[29] E. Ehabe, Y. Le Roux, F. Ngolemasango, F. Bonfils, G. Nkeng, B. Nkouonkam, M. S. Gobina. J. Appl. Polym. Sci. 86, 703 (2002), https://doi.org/10.1002/app.10968.Suche in Google Scholar

[30] M. Salomez, M. Subileau, J. Intapun, F. Bonfils, L. Vaysse, E. Dubreucq. J. Appl. Microbiol. 117, 921 (2014), https://doi.org/10.1111/jam.12556.Suche in Google Scholar PubMed

[31] J. Intapun, F. Bonfils, V. Tanrattanakul, E. Dubreucq, L. Vaysse. J. Appl. Polym. Sci. 118, 1341 (2010), https://doi.org/10.1002/app.v118:1.10.1002/app.v118:1Suche in Google Scholar

[32] D. S. Campbell, P. S. Farley. J. Nat. Rubber Res. 10, 242 (1995), https://doi.org/10.1080/02688867.1995.9727003.Suche in Google Scholar

[33] W. S. Bahary, L. Bsharah. J. Polym. Sci. Part A-1 6, 2819 (1968), https://doi.org/10.1002/pol.1968.150061012.Suche in Google Scholar

[34] S. Rolere, F. Deme, J. Sainte-Beuve, F. Bonfils. Rubber Chem. Technol. 90, 445 (2017), https://doi.org/10.5254/rct.16.83766.Suche in Google Scholar

[35] A. Ahmad, M. Y. A. Rahman, M. L. M. Ali, H. Hashim, F. A. Kalam. Ionics 13, 67 (2007), https://doi.org/10.1007/s11581-007-0074-2.Suche in Google Scholar

[36] M. Aziz, F. Latif, C. L. Chew, N. Katun. Solid State Phenom. 111, 67 (2006), https://doi.org/10.4028/www.scientific.net/ssp.111.67.Suche in Google Scholar

[37] S. F. Mohammad, R. Idris, N. S. Mohamed. Adv. Mater. Res. 129–131, 561 (2010), https://doi.org/10.4028/www.scientific.net/amr.129-131.561.Suche in Google Scholar

[38] C. H. Chan, H. W. Kammer. J. Appl. Polym. Sci. 110, 424 (2008), https://doi.org/10.1002/app.28555.Suche in Google Scholar

[39] R. Idris, M. Glasse, R. Latham, R. Linford, W. Schlindwein. J. Power Sources 94, 206 (2001), https://doi.org/10.1016/s0378-7753(00)00588-7.Suche in Google Scholar

[40] W. Klinklai, S. Kawahara, E. Marwanta, T. Mizumo, Y. Isono, H. Ohno. Solid State Ionics 177, 3251 (2006), https://doi.org/10.1016/j.ssi.2006.08.006.Suche in Google Scholar

[41] W. L. Tan, M. Abu Bakar. Ionics 22, 1319 (2016), https://doi.org/10.1007/s11581-016-1658-5.Suche in Google Scholar

[42] F. Harun, C. H. Chan. in Flexible and Stretchable Electronic Composites, D. Ponnamma, K. K. Sadasivuni, C. Wan, S. Thomas, M. Al-Ali AlMa’adeed (Eds.), pp. 37–59, Springer International Publishing, Switzerland (2016).10.1007/978-3-319-23663-6_2Suche in Google Scholar

[43] N. S. Hussin, F. Harun, C. H. Chan. Macromol. Symp. 376, 1700049 (2017), https://doi.org/10.1002/masy.201700049.Suche in Google Scholar

[44] F. Harun, C. H. Chan, L. H. Sim, T. Winie, N. F. A. Zainal. AIP Conf. Proc. 1674, 020032-1 (2015).10.1063/1.4928850Suche in Google Scholar

[45] S. N. H. Mohd Yusoff, L. H. Sim, C. H. Chan, A. Hashifudin, H. -W. Kammer. Polym. Res. J. 7, 159 (2013).Suche in Google Scholar

[46] C. H. Chan, H.-W. Kammer. Polym. Eng. Sci. 55, 2250 (2015), https://doi.org/10.1002/pen.24111.Suche in Google Scholar

[47] C. H. Chan, H. W. Kammer, L. H. Sim, M. K. Harun. in Rubber Types, Properties and Use, G. A. Popa (Ed.), pp. 306–336, Nova Science Publishing, New York (2013).Suche in Google Scholar

[48] W. L. Tan, M. Abu Bakar. Int. J. Electrochem. Sci. 11, 8612 (2016).10.20964/2016.10.33Suche in Google Scholar

[49] S. Roy, S. Bhattacharjee, B. R. Gupta. J. Appl. Polym. Sci. 49, 375 (1993), https://doi.org/10.1002/app.1993.070490301.Suche in Google Scholar

[50] C. Decker, H. Le Xuan, T. N. Thi Viet, J. Polym. Sci. Part A Polym. Chem. 33, 2759 (1995), https://doi.org/10.1002/pola.1995.080331610.Suche in Google Scholar

[51] M. R. Ambler. J. Appl. Polym. Sci. 20, 2259 (1976), https://doi.org/10.1002/app.1976.070200822.Suche in Google Scholar

[52] W. Klinklai, S. Kawahara, T. Mizumo, M. Yoshizawa, J. T. Sakdapipanich, Y. Isono, H. Ohno. Eur. Polym. J. 39, 1707 (2003), https://doi.org/10.1016/s0014-3057(03)00060-0.Suche in Google Scholar

[53] T. J. Singh, S. V. Bhat. J. Power Sources 129, 280 (2004), https://doi.org/10.1016/j.jpowsour.2003.11.025.Suche in Google Scholar

[54] P. Pal, A. Ghosh. Solid State Ionics 319, 117 (2018), https://doi.org/10.1016/j.ssi.2018.02.009.Suche in Google Scholar

[55] S. Wang. in Development of Solid Polymer Electrolytes of Polyurethane and Polyether-modified Polysiloxane Blends with Lithium Salts (PhD dissertation), University of Akron, Ohio (2007).Suche in Google Scholar

[56] K. Xu. Chem. Rev. 104, 4303 (2004), https://doi.org/10.1021/cr030203g.Suche in Google Scholar

[57] F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, G. Wang. J. Power Sources 184, 402 (2008), https://doi.org/10.1016/j.jpowsour.2008.04.062.Suche in Google Scholar

[58] W.-H. Hou, C.-Y. Chen, C.-C. Wang, Y.-H. Huang. Electrochim. Acta 48, 679 (2003), https://doi.org/10.1016/s0013-4686(02)00737-5.Suche in Google Scholar

[59] Y. Tominaga, K. Yamazaki, V. Nanthana. J. Electrochem. Soc. 162, A3133 (2015), https://doi.org/10.1149/2.0211502jes.Suche in Google Scholar

[60] N. Hasan, M. Pulst, M. H. Samiullah, J. Kressler. J. Polym. Sci., Part B: Polym. Phys. 57, 21 (2019), https://doi.org/10.1002/polb.24750.Suche in Google Scholar

[61] R. J. Seyler. in Assignment of the Glass Transition, Vol. 1249, ASTM International, Philadelphia (1994).10.1520/STP1249-EBSuche in Google Scholar

[62] M. Saiter, J. Marc, M. Negahban, P. dos Santos Claro, P. Delabarre, Garda. J. Mater. Educ. 30, 51 (2008).10.17771/PUCRio.PDPe.12037Suche in Google Scholar

[63] C. T. Moynihan, A. J. Easteal, M. A. De Bolt, J. Tucker. J. Am. Ceram. Soc. 59, 12 (1976), https://doi.org/10.1111/j.1151-2916.1976.tb09376.x.Suche in Google Scholar

[64] S. I. Abdul Halim, C. H. Chan, H.-W. Kammer. Polym. Test. 79, 105994 (2019), https://doi.org/10.1016/j.polymertesting.2019.105994.Suche in Google Scholar

[65] S. C. Ng, L. H. Gan. Eur. Polym. J. 17, 1073 (1981), https://doi.org/10.1016/0014-3057(81)90030-6.Suche in Google Scholar

[66] F. Bonfils, A. Doumbia, C. Char, J. Sainte Beuve. J. Appl. Polym. Sci. 97, 903 (2005), https://doi.org/10.1002/app.21845.Suche in Google Scholar

[67] N. V. Bac, L. Terlemezyan, M. Mihailov. J. Appl. Polym. Sci. 50, 845 (1993), https://doi.org/10.1002/app.1993.070500511.Suche in Google Scholar

[68] N. V. Bac, L. Terlemezyan, M. Mihailov. J. Appl. Polym. Sci. 42, 2965 (1991), https://doi.org/10.1002/app.1991.070421114.Suche in Google Scholar

[69] N. T. Ha, N. H. Quan, C. H. Ha, N. P. D. Linh, P. T. Nghia. Vietnam J. Sci. Technol. 56, 169 (2018), https://doi.org/10.15625/2525-2518/56/3b/12740.Suche in Google Scholar

[70] J. H. Bradbury, M. C. S. Perera. J. Appl. Polym. Sci. 30, 3347 (1985), https://doi.org/10.1002/app.1985.070300817.Suche in Google Scholar

[71] S. Roy, B. R. Gupta, B. R. Maiti. J. Elastomers Plastics 22, 280 (1990), https://doi.org/10.1177/009524439002200407.Suche in Google Scholar

[72] J. H. Aklonis, W. J. MacKnight, M. Shen, W. P. Mason. Phys. Today 26, 249 (1973), https://doi.org/10.1063/1.3128055.Suche in Google Scholar

[73] E. Kalkornsurapranee, W. Yung-Aoon, L. Songtipya, J. Johns. Plast. Rubber Compos. 46, 258 (2017), https://doi.org/10.1080/14658011.2017.1323610.Suche in Google Scholar

[74] R. Stephen, S. Jose, K. Joseph, S. Thomas, Z. Oommen. Polym. Degrad. Stabil. 91, 1717 (2006), https://doi.org/10.1016/j.polymdegradstab.2005.12.001.Suche in Google Scholar

[75] J. Johns, C. Nakason, A. Thitithammawong, P. Klinpituksa. Rubber Chem. Technol. 85, 565 (2012), https://doi.org/10.5254/rct.12.88920.Suche in Google Scholar

[76] C. Kirsch, M. Pulst, M. H. Samiullah, P. Ruda, N. Hasan, J. Kressler. Solid State Ionics 309, 163 (2017), https://doi.org/10.1016/j.ssi.2017.07.022.Suche in Google Scholar

[77] M. Sonderegger, J. Roos, C. Kugler, M. Mali, D. Brinkmann. Solid State Ionics 53–56, 849 (1992), https://doi.org/10.1016/0167-2738(92)90264-p.Suche in Google Scholar

[78] X. Ao, X. Wang, J. Tan, S. Zhang, C. Su, L. Dong, M. Tang, Z. Wang, B. Tian, H. Wang. Nanomater. Energy 79, 105475 (2021), https://doi.org/10.1016/j.nanoen.2020.105475.Suche in Google Scholar

[79] J. Peng, Y. Xiao, D. A. Clarkson, S. G. Greenbaum, T. A. Zawodzinski, X. C. Chen. ACS Appl. Polym. Mater. 2, 1180 (2020), https://doi.org/10.1021/acsapm.9b01068.Suche in Google Scholar

[80] R. Zhang, Z. Wei, W. Lei, T. Jiang, Q. Zhang, D. Shi. Chem. ElectroChem. 7, 3353 (2020), https://doi.org/10.1002/celc.202000784.Suche in Google Scholar

[81] E. A. Dimarzio, J. H. Gibbs. J. Polym. Sci. - Part A Gen. Pap. 1, 1417 (1963), https://doi.org/10.1002/pol.1963.100010428.Suche in Google Scholar

[82] S. Lascaud, M. Perrier, A. Vallée, S. Besner, J. Prudʼhomme, M. Armand. Macromolecules 27, 7469 (1994), https://doi.org/10.1021/ma00103a034.Suche in Google Scholar

[83] C. A. Angell, C. Liu, E. Sanchez. Nature 6416, 137 (1993), https://doi.org/10.1038/362137a0.Suche in Google Scholar

[84] S. Besner. J. Prud’homme, Macromolecules. 22, 3029 (1989), https://doi.org/10.1021/ma00197a026.Suche in Google Scholar

[85] S. Besner, A. Vallée, G. Bouchard. Macromolecules 25, 6480 (1992), https://doi.org/10.1021/ma00050a015.Suche in Google Scholar

[86] C. H. Chan, H. Kammer. Pure Appl. Chem. 90, 939 (2018), https://doi.org/10.1515/pac-2017-0911.Suche in Google Scholar

[87] C. H. Chan, H. W. Kammer, L. H. Sim, S. N. H. M. Yusoff, A. Hashifudin, T. Winie. Ionics 20, 189 (2014), https://doi.org/10.1007/s11581-013-0961-7.Suche in Google Scholar

[88] C. H. Chan, H.-W. Kammer. Ionics 21, 927 (2015), https://doi.org/10.1007/s11581-014-1256-3.Suche in Google Scholar

[89] P. Debye. Reprinted 1954 in Collected Papers of Peter J. W. Debye. Interscience, New York. Ver. Deut. Phys. Gesell. 15, 777 (1913).Suche in Google Scholar

Published Online: 2021-08-24
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2020-0904/html?lang=de
Button zum nach oben scrollen