Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
Abstract
The influence of thermal treatment on the thermal stability, thermal properties, dielectric properties and intermolecular interaction of binary epoxidized natural rubber (ENR)-salt systems, which may be a candidate for solid polymer electrolytes (SPEs) was investigated. Solubility of salt in ENR enhances, which may be due to the disruption of the lightly-crosslinked microgel under heat treatment. The increase in the ionic conductivities of the thermally treated ENR SPEs at constant salt content is correlated to the higher glass transition temperatures, development of percolation network and higher extent of intermolecular interactions between ENR and charged entities in this study.
Funding source: Ministry of Education Malaysia
Award Identifier / Grant number: 600-RMI/RAGS 5/3 (145/2014)
Acknowledgements
The authors would like to thank Ms. Nurul Syahidah Hussin for the FTIR, TGA, DSC and IS experimental data.
-
Research funding: The paper was supported by the Ministry of Education Malaysia under the project of Research Acculturation Grant Scheme (RAGS) (600-RMI/RAGS 5/3 (145/2014)) grant.
References
[1] M. Ravanbakhsh, S. N. Khorasani, S. Khalili. J. Elastomers Plastics 48, 394 (2016), https://doi.org/10.1177/0095244315580453.Suche in Google Scholar
[2] I. R. Gelling, M. Porter, A. D. Roberts. in Natural Rubber Science and Technology, A. D. Roberts (Ed.), Oxford University Press, New York (1988).Suche in Google Scholar
[3] R. M. Jorge, L. Lopes, M. R. Benzi, M. T. Ferreira, A. S. Gomes, R. C. R. Nunes. Int. J. Polym. Mater. Polym. Biomater. 59, 330 (2010), https://doi.org/10.1080/00914030903478891.Suche in Google Scholar
[4] T. Saito, W. Klinklai, S. Kawahara. Polymer 48, 750 (2007), https://doi.org/10.1016/j.polymer.2006.12.001.Suche in Google Scholar
[5] I. M. Alwaan, A. Hassan, M. A. M. Piah. Iran. Polym. J. (Engl. Ed.) 24, 279 (2015), https://doi.org/10.1007/s13726-015-0319-2.Suche in Google Scholar
[6] K. Ab-Malek, H. R. Ahmadi, A. H. Muhr, I. J. Stephens, J. Gough, J. K. Picken, L. J. Jun, M. U. Zulkefli, I. M. Taib. 15th World Conf. Earthq. Eng. 1 (2012).Suche in Google Scholar
[7] H. A. M. Hanif, K. C. Yong. MRB Rubber Technol. Dev. 18, 49 (2018).Suche in Google Scholar
[8] R. C. Ali, A. Mustafa, F. R. M. Rasdi. MRB Rubber Technol. Dev. 18, 30 (2018).Suche in Google Scholar
[9] I. R. Gelling. Rubber Chem. Technol. 58, 86 (1985), https://doi.org/10.5254/1.3536060.Suche in Google Scholar
[10] I. R. Gelling. J. Nat. Rubber Res. 6, 184 (1991), https://doi.org/10.7748/ns.6.3.55.s65.Suche in Google Scholar
[11] C. S. L. Baker, I. R. Gelling, R. Newell. Rubber Chem. Technol. 58, 67 (1985), https://doi.org/10.5254/1.3536059.Suche in Google Scholar
[12] A. S. Hashim, S. K. Ong. in Elastomers, N. Cankaya (Ed.), pp. 159–187, InTech, Rijeka, Croatia (2017).Suche in Google Scholar
[13] T. Johnson, S. Thomas. Polymer 40, 3223 (1999), https://doi.org/10.1016/s0032-3861(98)00528-x.Suche in Google Scholar
[14] R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy, A. S. Deuri. Polym. Eng. Sci. 47, 21 (2007), https://doi.org/10.1002/pen.20921.Suche in Google Scholar
[15] T. Johnson, S. Thomas. Polymer 41, 7511 (2000), https://doi.org/10.1016/s0032-3861(00)00076-8.Suche in Google Scholar
[16] J. E. Davey, M. J. R. Loadman. Br. Polym. J. 16, 134 (1984), https://doi.org/10.1002/pi.4980160305.Suche in Google Scholar
[17] K. Sae-heng, T. Kanya, N. Choothong, K. Kosugi, W. Ariyawiriyanan, S. Kawahara. Polym. Adv. Technol. 28, 1156 (2017), https://doi.org/10.1002/pat.4008.Suche in Google Scholar
[18] J. Tangpakdee, Y. Tanaka. Rubber Chem. Technol. 70, 707 (1997), https://doi.org/10.5254/1.3538454.Suche in Google Scholar
[19] H. Yu, Z. Zeng, G. Lu, Q. Wang. Eur. Polym. J. 44, 453 (2008), https://doi.org/10.1016/j.eurpolymj.2007.11.016.Suche in Google Scholar
[20] P. W. Allen, G. M. Bristow. Rubber Chem. Technol. 36, 1024 (1963), https://doi.org/10.5254/1.3539624.Suche in Google Scholar
[21] A. H. Eng, Y. Tanaka, S. N. Gan. J. Nat. Rubber Res. 12, 82 (1997).Suche in Google Scholar
[22] E. E. Ehabe, F. Bonfils, J. Sainte-Beuve, A. Collet, F. Schue. Polym. Eng. Sci. 46, 222 (2006), https://doi.org/10.1002/pen.20433.Suche in Google Scholar
[23] S. Rolere, C. Bottier, L. Vaysse, F. Bonfils. Express Polym. Lett. 10, 408 (2016), https://doi.org/10.3144/expresspolymlett.2016.38.Suche in Google Scholar
[24] D. Mekkriengkrai, J. T. Sakdapipanich, Y. Tanaka. Rubber Chem. Technol. 79, 366 (2006), https://doi.org/10.5254/1.3547942.Suche in Google Scholar
[25] Y. Tanaka, L. Tarachiwin. Rubber Chem. Technol. 82, 283 (2009), https://doi.org/10.5254/1.3548250.Suche in Google Scholar
[26] S. Amnuaypornsri, J. Sakdapipanich, S. Toki, B. S. Hsiao, N. Ichikawa, Y. Tanaka. Rubber Chem. Technol. 81, 753 (2008), https://doi.org/10.5254/1.3548230.Suche in Google Scholar
[27] S. Rolere, C. Cazevieille, J. Sainte-Beuve, F. Bonfils. Eur. Polym. J. 80, 117 (2016), https://doi.org/10.1016/j.eurpolymj.2016.05.008.Suche in Google Scholar
[28] A. Nimpaiboon, S. Amnuaypornsri, J. Sakdapipanich. Polym. Morphol. Princ. Charact. Process. 32, 1135 (2013), https://doi.org/10.1016/j.polymertesting.2013.07.003.Suche in Google Scholar
[29] E. Ehabe, Y. Le Roux, F. Ngolemasango, F. Bonfils, G. Nkeng, B. Nkouonkam, M. S. Gobina. J. Appl. Polym. Sci. 86, 703 (2002), https://doi.org/10.1002/app.10968.Suche in Google Scholar
[30] M. Salomez, M. Subileau, J. Intapun, F. Bonfils, L. Vaysse, E. Dubreucq. J. Appl. Microbiol. 117, 921 (2014), https://doi.org/10.1111/jam.12556.Suche in Google Scholar PubMed
[31] J. Intapun, F. Bonfils, V. Tanrattanakul, E. Dubreucq, L. Vaysse. J. Appl. Polym. Sci. 118, 1341 (2010), https://doi.org/10.1002/app.v118:1.10.1002/app.v118:1Suche in Google Scholar
[32] D. S. Campbell, P. S. Farley. J. Nat. Rubber Res. 10, 242 (1995), https://doi.org/10.1080/02688867.1995.9727003.Suche in Google Scholar
[33] W. S. Bahary, L. Bsharah. J. Polym. Sci. Part A-1 6, 2819 (1968), https://doi.org/10.1002/pol.1968.150061012.Suche in Google Scholar
[34] S. Rolere, F. Deme, J. Sainte-Beuve, F. Bonfils. Rubber Chem. Technol. 90, 445 (2017), https://doi.org/10.5254/rct.16.83766.Suche in Google Scholar
[35] A. Ahmad, M. Y. A. Rahman, M. L. M. Ali, H. Hashim, F. A. Kalam. Ionics 13, 67 (2007), https://doi.org/10.1007/s11581-007-0074-2.Suche in Google Scholar
[36] M. Aziz, F. Latif, C. L. Chew, N. Katun. Solid State Phenom. 111, 67 (2006), https://doi.org/10.4028/www.scientific.net/ssp.111.67.Suche in Google Scholar
[37] S. F. Mohammad, R. Idris, N. S. Mohamed. Adv. Mater. Res. 129–131, 561 (2010), https://doi.org/10.4028/www.scientific.net/amr.129-131.561.Suche in Google Scholar
[38] C. H. Chan, H. W. Kammer. J. Appl. Polym. Sci. 110, 424 (2008), https://doi.org/10.1002/app.28555.Suche in Google Scholar
[39] R. Idris, M. Glasse, R. Latham, R. Linford, W. Schlindwein. J. Power Sources 94, 206 (2001), https://doi.org/10.1016/s0378-7753(00)00588-7.Suche in Google Scholar
[40] W. Klinklai, S. Kawahara, E. Marwanta, T. Mizumo, Y. Isono, H. Ohno. Solid State Ionics 177, 3251 (2006), https://doi.org/10.1016/j.ssi.2006.08.006.Suche in Google Scholar
[41] W. L. Tan, M. Abu Bakar. Ionics 22, 1319 (2016), https://doi.org/10.1007/s11581-016-1658-5.Suche in Google Scholar
[42] F. Harun, C. H. Chan. in Flexible and Stretchable Electronic Composites, D. Ponnamma, K. K. Sadasivuni, C. Wan, S. Thomas, M. Al-Ali AlMa’adeed (Eds.), pp. 37–59, Springer International Publishing, Switzerland (2016).10.1007/978-3-319-23663-6_2Suche in Google Scholar
[43] N. S. Hussin, F. Harun, C. H. Chan. Macromol. Symp. 376, 1700049 (2017), https://doi.org/10.1002/masy.201700049.Suche in Google Scholar
[44] F. Harun, C. H. Chan, L. H. Sim, T. Winie, N. F. A. Zainal. AIP Conf. Proc. 1674, 020032-1 (2015).10.1063/1.4928850Suche in Google Scholar
[45] S. N. H. Mohd Yusoff, L. H. Sim, C. H. Chan, A. Hashifudin, H. -W. Kammer. Polym. Res. J. 7, 159 (2013).Suche in Google Scholar
[46] C. H. Chan, H.-W. Kammer. Polym. Eng. Sci. 55, 2250 (2015), https://doi.org/10.1002/pen.24111.Suche in Google Scholar
[47] C. H. Chan, H. W. Kammer, L. H. Sim, M. K. Harun. in Rubber Types, Properties and Use, G. A. Popa (Ed.), pp. 306–336, Nova Science Publishing, New York (2013).Suche in Google Scholar
[48] W. L. Tan, M. Abu Bakar. Int. J. Electrochem. Sci. 11, 8612 (2016).10.20964/2016.10.33Suche in Google Scholar
[49] S. Roy, S. Bhattacharjee, B. R. Gupta. J. Appl. Polym. Sci. 49, 375 (1993), https://doi.org/10.1002/app.1993.070490301.Suche in Google Scholar
[50] C. Decker, H. Le Xuan, T. N. Thi Viet, J. Polym. Sci. Part A Polym. Chem. 33, 2759 (1995), https://doi.org/10.1002/pola.1995.080331610.Suche in Google Scholar
[51] M. R. Ambler. J. Appl. Polym. Sci. 20, 2259 (1976), https://doi.org/10.1002/app.1976.070200822.Suche in Google Scholar
[52] W. Klinklai, S. Kawahara, T. Mizumo, M. Yoshizawa, J. T. Sakdapipanich, Y. Isono, H. Ohno. Eur. Polym. J. 39, 1707 (2003), https://doi.org/10.1016/s0014-3057(03)00060-0.Suche in Google Scholar
[53] T. J. Singh, S. V. Bhat. J. Power Sources 129, 280 (2004), https://doi.org/10.1016/j.jpowsour.2003.11.025.Suche in Google Scholar
[54] P. Pal, A. Ghosh. Solid State Ionics 319, 117 (2018), https://doi.org/10.1016/j.ssi.2018.02.009.Suche in Google Scholar
[55] S. Wang. in Development of Solid Polymer Electrolytes of Polyurethane and Polyether-modified Polysiloxane Blends with Lithium Salts (PhD dissertation), University of Akron, Ohio (2007).Suche in Google Scholar
[56] K. Xu. Chem. Rev. 104, 4303 (2004), https://doi.org/10.1021/cr030203g.Suche in Google Scholar
[57] F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, G. Wang. J. Power Sources 184, 402 (2008), https://doi.org/10.1016/j.jpowsour.2008.04.062.Suche in Google Scholar
[58] W.-H. Hou, C.-Y. Chen, C.-C. Wang, Y.-H. Huang. Electrochim. Acta 48, 679 (2003), https://doi.org/10.1016/s0013-4686(02)00737-5.Suche in Google Scholar
[59] Y. Tominaga, K. Yamazaki, V. Nanthana. J. Electrochem. Soc. 162, A3133 (2015), https://doi.org/10.1149/2.0211502jes.Suche in Google Scholar
[60] N. Hasan, M. Pulst, M. H. Samiullah, J. Kressler. J. Polym. Sci., Part B: Polym. Phys. 57, 21 (2019), https://doi.org/10.1002/polb.24750.Suche in Google Scholar
[61] R. J. Seyler. in Assignment of the Glass Transition, Vol. 1249, ASTM International, Philadelphia (1994).10.1520/STP1249-EBSuche in Google Scholar
[62] M. Saiter, J. Marc, M. Negahban, P. dos Santos Claro, P. Delabarre, Garda. J. Mater. Educ. 30, 51 (2008).10.17771/PUCRio.PDPe.12037Suche in Google Scholar
[63] C. T. Moynihan, A. J. Easteal, M. A. De Bolt, J. Tucker. J. Am. Ceram. Soc. 59, 12 (1976), https://doi.org/10.1111/j.1151-2916.1976.tb09376.x.Suche in Google Scholar
[64] S. I. Abdul Halim, C. H. Chan, H.-W. Kammer. Polym. Test. 79, 105994 (2019), https://doi.org/10.1016/j.polymertesting.2019.105994.Suche in Google Scholar
[65] S. C. Ng, L. H. Gan. Eur. Polym. J. 17, 1073 (1981), https://doi.org/10.1016/0014-3057(81)90030-6.Suche in Google Scholar
[66] F. Bonfils, A. Doumbia, C. Char, J. Sainte Beuve. J. Appl. Polym. Sci. 97, 903 (2005), https://doi.org/10.1002/app.21845.Suche in Google Scholar
[67] N. V. Bac, L. Terlemezyan, M. Mihailov. J. Appl. Polym. Sci. 50, 845 (1993), https://doi.org/10.1002/app.1993.070500511.Suche in Google Scholar
[68] N. V. Bac, L. Terlemezyan, M. Mihailov. J. Appl. Polym. Sci. 42, 2965 (1991), https://doi.org/10.1002/app.1991.070421114.Suche in Google Scholar
[69] N. T. Ha, N. H. Quan, C. H. Ha, N. P. D. Linh, P. T. Nghia. Vietnam J. Sci. Technol. 56, 169 (2018), https://doi.org/10.15625/2525-2518/56/3b/12740.Suche in Google Scholar
[70] J. H. Bradbury, M. C. S. Perera. J. Appl. Polym. Sci. 30, 3347 (1985), https://doi.org/10.1002/app.1985.070300817.Suche in Google Scholar
[71] S. Roy, B. R. Gupta, B. R. Maiti. J. Elastomers Plastics 22, 280 (1990), https://doi.org/10.1177/009524439002200407.Suche in Google Scholar
[72] J. H. Aklonis, W. J. MacKnight, M. Shen, W. P. Mason. Phys. Today 26, 249 (1973), https://doi.org/10.1063/1.3128055.Suche in Google Scholar
[73] E. Kalkornsurapranee, W. Yung-Aoon, L. Songtipya, J. Johns. Plast. Rubber Compos. 46, 258 (2017), https://doi.org/10.1080/14658011.2017.1323610.Suche in Google Scholar
[74] R. Stephen, S. Jose, K. Joseph, S. Thomas, Z. Oommen. Polym. Degrad. Stabil. 91, 1717 (2006), https://doi.org/10.1016/j.polymdegradstab.2005.12.001.Suche in Google Scholar
[75] J. Johns, C. Nakason, A. Thitithammawong, P. Klinpituksa. Rubber Chem. Technol. 85, 565 (2012), https://doi.org/10.5254/rct.12.88920.Suche in Google Scholar
[76] C. Kirsch, M. Pulst, M. H. Samiullah, P. Ruda, N. Hasan, J. Kressler. Solid State Ionics 309, 163 (2017), https://doi.org/10.1016/j.ssi.2017.07.022.Suche in Google Scholar
[77] M. Sonderegger, J. Roos, C. Kugler, M. Mali, D. Brinkmann. Solid State Ionics 53–56, 849 (1992), https://doi.org/10.1016/0167-2738(92)90264-p.Suche in Google Scholar
[78] X. Ao, X. Wang, J. Tan, S. Zhang, C. Su, L. Dong, M. Tang, Z. Wang, B. Tian, H. Wang. Nanomater. Energy 79, 105475 (2021), https://doi.org/10.1016/j.nanoen.2020.105475.Suche in Google Scholar
[79] J. Peng, Y. Xiao, D. A. Clarkson, S. G. Greenbaum, T. A. Zawodzinski, X. C. Chen. ACS Appl. Polym. Mater. 2, 1180 (2020), https://doi.org/10.1021/acsapm.9b01068.Suche in Google Scholar
[80] R. Zhang, Z. Wei, W. Lei, T. Jiang, Q. Zhang, D. Shi. Chem. ElectroChem. 7, 3353 (2020), https://doi.org/10.1002/celc.202000784.Suche in Google Scholar
[81] E. A. Dimarzio, J. H. Gibbs. J. Polym. Sci. - Part A Gen. Pap. 1, 1417 (1963), https://doi.org/10.1002/pol.1963.100010428.Suche in Google Scholar
[82] S. Lascaud, M. Perrier, A. Vallée, S. Besner, J. Prudʼhomme, M. Armand. Macromolecules 27, 7469 (1994), https://doi.org/10.1021/ma00103a034.Suche in Google Scholar
[83] C. A. Angell, C. Liu, E. Sanchez. Nature 6416, 137 (1993), https://doi.org/10.1038/362137a0.Suche in Google Scholar
[84] S. Besner. J. Prud’homme, Macromolecules. 22, 3029 (1989), https://doi.org/10.1021/ma00197a026.Suche in Google Scholar
[85] S. Besner, A. Vallée, G. Bouchard. Macromolecules 25, 6480 (1992), https://doi.org/10.1021/ma00050a015.Suche in Google Scholar
[86] C. H. Chan, H. Kammer. Pure Appl. Chem. 90, 939 (2018), https://doi.org/10.1515/pac-2017-0911.Suche in Google Scholar
[87] C. H. Chan, H. W. Kammer, L. H. Sim, S. N. H. M. Yusoff, A. Hashifudin, T. Winie. Ionics 20, 189 (2014), https://doi.org/10.1007/s11581-013-0961-7.Suche in Google Scholar
[88] C. H. Chan, H.-W. Kammer. Ionics 21, 927 (2015), https://doi.org/10.1007/s11581-014-1256-3.Suche in Google Scholar
[89] P. Debye. Reprinted 1954 in Collected Papers of Peter J. W. Debye. Interscience, New York. Ver. Deut. Phys. Gesell. 15, 777 (1913).Suche in Google Scholar
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities