Home Physical Sciences Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
Article
Licensed
Unlicensed Requires Authentication

Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems

  • Nurul Fatahah Asyqin Zainal , Hairunnisa Ramli , Margarethe Fritz , Volker Abetz ORCID logo and Chin Han Chan ORCID logo EMAIL logo
Published/Copyright: August 24, 2021

Abstract

The influence of thermal treatment on the thermal stability, thermal properties, dielectric properties and intermolecular interaction of binary epoxidized natural rubber (ENR)-salt systems, which may be a candidate for solid polymer electrolytes (SPEs) was investigated. Solubility of salt in ENR enhances, which may be due to the disruption of the lightly-crosslinked microgel under heat treatment. The increase in the ionic conductivities of the thermally treated ENR SPEs at constant salt content is correlated to the higher glass transition temperatures, development of percolation network and higher extent of intermolecular interactions between ENR and charged entities in this study.


Corresponding author: Chin Han Chan, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, e-mail:

Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.


Funding source: Ministry of Education Malaysia

Award Identifier / Grant number: 600-RMI/RAGS 5/3 (145/2014)

Acknowledgements

The authors would like to thank Ms. Nurul Syahidah Hussin for the FTIR, TGA, DSC and IS experimental data.

  1. Research funding: The paper was supported by the Ministry of Education Malaysia under the project of Research Acculturation Grant Scheme (RAGS) (600-RMI/RAGS 5/3 (145/2014)) grant.

References

[1] M. Ravanbakhsh, S. N. Khorasani, S. Khalili. J. Elastomers Plastics 48, 394 (2016), https://doi.org/10.1177/0095244315580453.Search in Google Scholar

[2] I. R. Gelling, M. Porter, A. D. Roberts. in Natural Rubber Science and Technology, A. D. Roberts (Ed.), Oxford University Press, New York (1988).Search in Google Scholar

[3] R. M. Jorge, L. Lopes, M. R. Benzi, M. T. Ferreira, A. S. Gomes, R. C. R. Nunes. Int. J. Polym. Mater. Polym. Biomater. 59, 330 (2010), https://doi.org/10.1080/00914030903478891.Search in Google Scholar

[4] T. Saito, W. Klinklai, S. Kawahara. Polymer 48, 750 (2007), https://doi.org/10.1016/j.polymer.2006.12.001.Search in Google Scholar

[5] I. M. Alwaan, A. Hassan, M. A. M. Piah. Iran. Polym. J. (Engl. Ed.) 24, 279 (2015), https://doi.org/10.1007/s13726-015-0319-2.Search in Google Scholar

[6] K. Ab-Malek, H. R. Ahmadi, A. H. Muhr, I. J. Stephens, J. Gough, J. K. Picken, L. J. Jun, M. U. Zulkefli, I. M. Taib. 15th World Conf. Earthq. Eng. 1 (2012).Search in Google Scholar

[7] H. A. M. Hanif, K. C. Yong. MRB Rubber Technol. Dev. 18, 49 (2018).Search in Google Scholar

[8] R. C. Ali, A. Mustafa, F. R. M. Rasdi. MRB Rubber Technol. Dev. 18, 30 (2018).Search in Google Scholar

[9] I. R. Gelling. Rubber Chem. Technol. 58, 86 (1985), https://doi.org/10.5254/1.3536060.Search in Google Scholar

[10] I. R. Gelling. J. Nat. Rubber Res. 6, 184 (1991), https://doi.org/10.7748/ns.6.3.55.s65.Search in Google Scholar

[11] C. S. L. Baker, I. R. Gelling, R. Newell. Rubber Chem. Technol. 58, 67 (1985), https://doi.org/10.5254/1.3536059.Search in Google Scholar

[12] A. S. Hashim, S. K. Ong. in Elastomers, N. Cankaya (Ed.), pp. 159–187, InTech, Rijeka, Croatia (2017).Search in Google Scholar

[13] T. Johnson, S. Thomas. Polymer 40, 3223 (1999), https://doi.org/10.1016/s0032-3861(98)00528-x.Search in Google Scholar

[14] R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy, A. S. Deuri. Polym. Eng. Sci. 47, 21 (2007), https://doi.org/10.1002/pen.20921.Search in Google Scholar

[15] T. Johnson, S. Thomas. Polymer 41, 7511 (2000), https://doi.org/10.1016/s0032-3861(00)00076-8.Search in Google Scholar

[16] J. E. Davey, M. J. R. Loadman. Br. Polym. J. 16, 134 (1984), https://doi.org/10.1002/pi.4980160305.Search in Google Scholar

[17] K. Sae-heng, T. Kanya, N. Choothong, K. Kosugi, W. Ariyawiriyanan, S. Kawahara. Polym. Adv. Technol. 28, 1156 (2017), https://doi.org/10.1002/pat.4008.Search in Google Scholar

[18] J. Tangpakdee, Y. Tanaka. Rubber Chem. Technol. 70, 707 (1997), https://doi.org/10.5254/1.3538454.Search in Google Scholar

[19] H. Yu, Z. Zeng, G. Lu, Q. Wang. Eur. Polym. J. 44, 453 (2008), https://doi.org/10.1016/j.eurpolymj.2007.11.016.Search in Google Scholar

[20] P. W. Allen, G. M. Bristow. Rubber Chem. Technol. 36, 1024 (1963), https://doi.org/10.5254/1.3539624.Search in Google Scholar

[21] A. H. Eng, Y. Tanaka, S. N. Gan. J. Nat. Rubber Res. 12, 82 (1997).Search in Google Scholar

[22] E. E. Ehabe, F. Bonfils, J. Sainte-Beuve, A. Collet, F. Schue. Polym. Eng. Sci. 46, 222 (2006), https://doi.org/10.1002/pen.20433.Search in Google Scholar

[23] S. Rolere, C. Bottier, L. Vaysse, F. Bonfils. Express Polym. Lett. 10, 408 (2016), https://doi.org/10.3144/expresspolymlett.2016.38.Search in Google Scholar

[24] D. Mekkriengkrai, J. T. Sakdapipanich, Y. Tanaka. Rubber Chem. Technol. 79, 366 (2006), https://doi.org/10.5254/1.3547942.Search in Google Scholar

[25] Y. Tanaka, L. Tarachiwin. Rubber Chem. Technol. 82, 283 (2009), https://doi.org/10.5254/1.3548250.Search in Google Scholar

[26] S. Amnuaypornsri, J. Sakdapipanich, S. Toki, B. S. Hsiao, N. Ichikawa, Y. Tanaka. Rubber Chem. Technol. 81, 753 (2008), https://doi.org/10.5254/1.3548230.Search in Google Scholar

[27] S. Rolere, C. Cazevieille, J. Sainte-Beuve, F. Bonfils. Eur. Polym. J. 80, 117 (2016), https://doi.org/10.1016/j.eurpolymj.2016.05.008.Search in Google Scholar

[28] A. Nimpaiboon, S. Amnuaypornsri, J. Sakdapipanich. Polym. Morphol. Princ. Charact. Process. 32, 1135 (2013), https://doi.org/10.1016/j.polymertesting.2013.07.003.Search in Google Scholar

[29] E. Ehabe, Y. Le Roux, F. Ngolemasango, F. Bonfils, G. Nkeng, B. Nkouonkam, M. S. Gobina. J. Appl. Polym. Sci. 86, 703 (2002), https://doi.org/10.1002/app.10968.Search in Google Scholar

[30] M. Salomez, M. Subileau, J. Intapun, F. Bonfils, L. Vaysse, E. Dubreucq. J. Appl. Microbiol. 117, 921 (2014), https://doi.org/10.1111/jam.12556.Search in Google Scholar PubMed

[31] J. Intapun, F. Bonfils, V. Tanrattanakul, E. Dubreucq, L. Vaysse. J. Appl. Polym. Sci. 118, 1341 (2010), https://doi.org/10.1002/app.v118:1.10.1002/app.v118:1Search in Google Scholar

[32] D. S. Campbell, P. S. Farley. J. Nat. Rubber Res. 10, 242 (1995), https://doi.org/10.1080/02688867.1995.9727003.Search in Google Scholar

[33] W. S. Bahary, L. Bsharah. J. Polym. Sci. Part A-1 6, 2819 (1968), https://doi.org/10.1002/pol.1968.150061012.Search in Google Scholar

[34] S. Rolere, F. Deme, J. Sainte-Beuve, F. Bonfils. Rubber Chem. Technol. 90, 445 (2017), https://doi.org/10.5254/rct.16.83766.Search in Google Scholar

[35] A. Ahmad, M. Y. A. Rahman, M. L. M. Ali, H. Hashim, F. A. Kalam. Ionics 13, 67 (2007), https://doi.org/10.1007/s11581-007-0074-2.Search in Google Scholar

[36] M. Aziz, F. Latif, C. L. Chew, N. Katun. Solid State Phenom. 111, 67 (2006), https://doi.org/10.4028/www.scientific.net/ssp.111.67.Search in Google Scholar

[37] S. F. Mohammad, R. Idris, N. S. Mohamed. Adv. Mater. Res. 129–131, 561 (2010), https://doi.org/10.4028/www.scientific.net/amr.129-131.561.Search in Google Scholar

[38] C. H. Chan, H. W. Kammer. J. Appl. Polym. Sci. 110, 424 (2008), https://doi.org/10.1002/app.28555.Search in Google Scholar

[39] R. Idris, M. Glasse, R. Latham, R. Linford, W. Schlindwein. J. Power Sources 94, 206 (2001), https://doi.org/10.1016/s0378-7753(00)00588-7.Search in Google Scholar

[40] W. Klinklai, S. Kawahara, E. Marwanta, T. Mizumo, Y. Isono, H. Ohno. Solid State Ionics 177, 3251 (2006), https://doi.org/10.1016/j.ssi.2006.08.006.Search in Google Scholar

[41] W. L. Tan, M. Abu Bakar. Ionics 22, 1319 (2016), https://doi.org/10.1007/s11581-016-1658-5.Search in Google Scholar

[42] F. Harun, C. H. Chan. in Flexible and Stretchable Electronic Composites, D. Ponnamma, K. K. Sadasivuni, C. Wan, S. Thomas, M. Al-Ali AlMa’adeed (Eds.), pp. 37–59, Springer International Publishing, Switzerland (2016).10.1007/978-3-319-23663-6_2Search in Google Scholar

[43] N. S. Hussin, F. Harun, C. H. Chan. Macromol. Symp. 376, 1700049 (2017), https://doi.org/10.1002/masy.201700049.Search in Google Scholar

[44] F. Harun, C. H. Chan, L. H. Sim, T. Winie, N. F. A. Zainal. AIP Conf. Proc. 1674, 020032-1 (2015).10.1063/1.4928850Search in Google Scholar

[45] S. N. H. Mohd Yusoff, L. H. Sim, C. H. Chan, A. Hashifudin, H. -W. Kammer. Polym. Res. J. 7, 159 (2013).Search in Google Scholar

[46] C. H. Chan, H.-W. Kammer. Polym. Eng. Sci. 55, 2250 (2015), https://doi.org/10.1002/pen.24111.Search in Google Scholar

[47] C. H. Chan, H. W. Kammer, L. H. Sim, M. K. Harun. in Rubber Types, Properties and Use, G. A. Popa (Ed.), pp. 306–336, Nova Science Publishing, New York (2013).Search in Google Scholar

[48] W. L. Tan, M. Abu Bakar. Int. J. Electrochem. Sci. 11, 8612 (2016).10.20964/2016.10.33Search in Google Scholar

[49] S. Roy, S. Bhattacharjee, B. R. Gupta. J. Appl. Polym. Sci. 49, 375 (1993), https://doi.org/10.1002/app.1993.070490301.Search in Google Scholar

[50] C. Decker, H. Le Xuan, T. N. Thi Viet, J. Polym. Sci. Part A Polym. Chem. 33, 2759 (1995), https://doi.org/10.1002/pola.1995.080331610.Search in Google Scholar

[51] M. R. Ambler. J. Appl. Polym. Sci. 20, 2259 (1976), https://doi.org/10.1002/app.1976.070200822.Search in Google Scholar

[52] W. Klinklai, S. Kawahara, T. Mizumo, M. Yoshizawa, J. T. Sakdapipanich, Y. Isono, H. Ohno. Eur. Polym. J. 39, 1707 (2003), https://doi.org/10.1016/s0014-3057(03)00060-0.Search in Google Scholar

[53] T. J. Singh, S. V. Bhat. J. Power Sources 129, 280 (2004), https://doi.org/10.1016/j.jpowsour.2003.11.025.Search in Google Scholar

[54] P. Pal, A. Ghosh. Solid State Ionics 319, 117 (2018), https://doi.org/10.1016/j.ssi.2018.02.009.Search in Google Scholar

[55] S. Wang. in Development of Solid Polymer Electrolytes of Polyurethane and Polyether-modified Polysiloxane Blends with Lithium Salts (PhD dissertation), University of Akron, Ohio (2007).Search in Google Scholar

[56] K. Xu. Chem. Rev. 104, 4303 (2004), https://doi.org/10.1021/cr030203g.Search in Google Scholar

[57] F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, G. Wang. J. Power Sources 184, 402 (2008), https://doi.org/10.1016/j.jpowsour.2008.04.062.Search in Google Scholar

[58] W.-H. Hou, C.-Y. Chen, C.-C. Wang, Y.-H. Huang. Electrochim. Acta 48, 679 (2003), https://doi.org/10.1016/s0013-4686(02)00737-5.Search in Google Scholar

[59] Y. Tominaga, K. Yamazaki, V. Nanthana. J. Electrochem. Soc. 162, A3133 (2015), https://doi.org/10.1149/2.0211502jes.Search in Google Scholar

[60] N. Hasan, M. Pulst, M. H. Samiullah, J. Kressler. J. Polym. Sci., Part B: Polym. Phys. 57, 21 (2019), https://doi.org/10.1002/polb.24750.Search in Google Scholar

[61] R. J. Seyler. in Assignment of the Glass Transition, Vol. 1249, ASTM International, Philadelphia (1994).10.1520/STP1249-EBSearch in Google Scholar

[62] M. Saiter, J. Marc, M. Negahban, P. dos Santos Claro, P. Delabarre, Garda. J. Mater. Educ. 30, 51 (2008).10.17771/PUCRio.PDPe.12037Search in Google Scholar

[63] C. T. Moynihan, A. J. Easteal, M. A. De Bolt, J. Tucker. J. Am. Ceram. Soc. 59, 12 (1976), https://doi.org/10.1111/j.1151-2916.1976.tb09376.x.Search in Google Scholar

[64] S. I. Abdul Halim, C. H. Chan, H.-W. Kammer. Polym. Test. 79, 105994 (2019), https://doi.org/10.1016/j.polymertesting.2019.105994.Search in Google Scholar

[65] S. C. Ng, L. H. Gan. Eur. Polym. J. 17, 1073 (1981), https://doi.org/10.1016/0014-3057(81)90030-6.Search in Google Scholar

[66] F. Bonfils, A. Doumbia, C. Char, J. Sainte Beuve. J. Appl. Polym. Sci. 97, 903 (2005), https://doi.org/10.1002/app.21845.Search in Google Scholar

[67] N. V. Bac, L. Terlemezyan, M. Mihailov. J. Appl. Polym. Sci. 50, 845 (1993), https://doi.org/10.1002/app.1993.070500511.Search in Google Scholar

[68] N. V. Bac, L. Terlemezyan, M. Mihailov. J. Appl. Polym. Sci. 42, 2965 (1991), https://doi.org/10.1002/app.1991.070421114.Search in Google Scholar

[69] N. T. Ha, N. H. Quan, C. H. Ha, N. P. D. Linh, P. T. Nghia. Vietnam J. Sci. Technol. 56, 169 (2018), https://doi.org/10.15625/2525-2518/56/3b/12740.Search in Google Scholar

[70] J. H. Bradbury, M. C. S. Perera. J. Appl. Polym. Sci. 30, 3347 (1985), https://doi.org/10.1002/app.1985.070300817.Search in Google Scholar

[71] S. Roy, B. R. Gupta, B. R. Maiti. J. Elastomers Plastics 22, 280 (1990), https://doi.org/10.1177/009524439002200407.Search in Google Scholar

[72] J. H. Aklonis, W. J. MacKnight, M. Shen, W. P. Mason. Phys. Today 26, 249 (1973), https://doi.org/10.1063/1.3128055.Search in Google Scholar

[73] E. Kalkornsurapranee, W. Yung-Aoon, L. Songtipya, J. Johns. Plast. Rubber Compos. 46, 258 (2017), https://doi.org/10.1080/14658011.2017.1323610.Search in Google Scholar

[74] R. Stephen, S. Jose, K. Joseph, S. Thomas, Z. Oommen. Polym. Degrad. Stabil. 91, 1717 (2006), https://doi.org/10.1016/j.polymdegradstab.2005.12.001.Search in Google Scholar

[75] J. Johns, C. Nakason, A. Thitithammawong, P. Klinpituksa. Rubber Chem. Technol. 85, 565 (2012), https://doi.org/10.5254/rct.12.88920.Search in Google Scholar

[76] C. Kirsch, M. Pulst, M. H. Samiullah, P. Ruda, N. Hasan, J. Kressler. Solid State Ionics 309, 163 (2017), https://doi.org/10.1016/j.ssi.2017.07.022.Search in Google Scholar

[77] M. Sonderegger, J. Roos, C. Kugler, M. Mali, D. Brinkmann. Solid State Ionics 53–56, 849 (1992), https://doi.org/10.1016/0167-2738(92)90264-p.Search in Google Scholar

[78] X. Ao, X. Wang, J. Tan, S. Zhang, C. Su, L. Dong, M. Tang, Z. Wang, B. Tian, H. Wang. Nanomater. Energy 79, 105475 (2021), https://doi.org/10.1016/j.nanoen.2020.105475.Search in Google Scholar

[79] J. Peng, Y. Xiao, D. A. Clarkson, S. G. Greenbaum, T. A. Zawodzinski, X. C. Chen. ACS Appl. Polym. Mater. 2, 1180 (2020), https://doi.org/10.1021/acsapm.9b01068.Search in Google Scholar

[80] R. Zhang, Z. Wei, W. Lei, T. Jiang, Q. Zhang, D. Shi. Chem. ElectroChem. 7, 3353 (2020), https://doi.org/10.1002/celc.202000784.Search in Google Scholar

[81] E. A. Dimarzio, J. H. Gibbs. J. Polym. Sci. - Part A Gen. Pap. 1, 1417 (1963), https://doi.org/10.1002/pol.1963.100010428.Search in Google Scholar

[82] S. Lascaud, M. Perrier, A. Vallée, S. Besner, J. Prudʼhomme, M. Armand. Macromolecules 27, 7469 (1994), https://doi.org/10.1021/ma00103a034.Search in Google Scholar

[83] C. A. Angell, C. Liu, E. Sanchez. Nature 6416, 137 (1993), https://doi.org/10.1038/362137a0.Search in Google Scholar

[84] S. Besner. J. Prud’homme, Macromolecules. 22, 3029 (1989), https://doi.org/10.1021/ma00197a026.Search in Google Scholar

[85] S. Besner, A. Vallée, G. Bouchard. Macromolecules 25, 6480 (1992), https://doi.org/10.1021/ma00050a015.Search in Google Scholar

[86] C. H. Chan, H. Kammer. Pure Appl. Chem. 90, 939 (2018), https://doi.org/10.1515/pac-2017-0911.Search in Google Scholar

[87] C. H. Chan, H. W. Kammer, L. H. Sim, S. N. H. M. Yusoff, A. Hashifudin, T. Winie. Ionics 20, 189 (2014), https://doi.org/10.1007/s11581-013-0961-7.Search in Google Scholar

[88] C. H. Chan, H.-W. Kammer. Ionics 21, 927 (2015), https://doi.org/10.1007/s11581-014-1256-3.Search in Google Scholar

[89] P. Debye. Reprinted 1954 in Collected Papers of Peter J. W. Debye. Interscience, New York. Ver. Deut. Phys. Gesell. 15, 777 (1913).Search in Google Scholar

Published Online: 2021-08-24
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Downloaded on 12.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2020-0904/html
Scroll to top button