Home Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties
Article
Licensed
Unlicensed Requires Authentication

Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties

Valorization of different raw materials for films production
  • Thiago Moreira Cruz ORCID logo , Adriano Reis Prazeres Mascarenhas ORCID logo EMAIL logo , Mário Vanoli Scatolino ORCID logo , Douglas Lamounier Faria ORCID logo , Lays Camila Matos ORCID logo , Paulo Junio Duarte ORCID logo , João Moreira Neto ORCID logo , Lourival Marin Mendes ORCID logo and Gustavo Henrique Denzin Tonoli ORCID logo
Published/Copyright: January 11, 2022
Become an author with De Gruyter Brill

Abstract

The accumulation of petroleum polymers compromises biodiversity and causes environmental problems. Nanocellulose enhances biodegradability and can improve the physical-mechanical performance of materials. The objective was to produce and characterize hybrid films composed of bacterial cellulose (BC) and plant nanocellulose from Eucalyptus (Euc) or Pinus (Pin). Films were produced by the casting method using filmogenic suspensions with different cellulose nanofibrils (CNFs) proportions from both the sources (0, 25, 50, 75 and 100 %). CNFs suspensions were characterized by transmission electron microscopy. The morphology of the films was analyzed using scanning electron microscopy. In addition, the transparency, contact angle, wettability, oil and water vapor barrier and mechanical properties were also evaluated. The contact angles were smaller for films with BC and the wettability was greater when comparing BC with plant CNFs (0.10 °  s 1 for 75 % Euc/25 % BC and 0.20 °  s 1 for 25 % Euc/75 % BC). The water vapor permeability (WVP) of the 100 % BC films and the 25 % Euc/75 % BC composition were the highest among the studied compositions. Tensile strength, Young’s modulus and puncture strength decreased considerably with the addition of BC in the films. More studies regarding pre-treatments to purify BC are needed to improve the mechanical properties of the films.

Award Identifier / Grant number: 151379-19

Funding statement: The authors acknowledge the financial support from National Council for Scientific and Technological Development (CNPq) (finance code 151379-19), Minas Gerais Research Foundation (FAPEMIG), and Coordination for the Improvement of Higher Education Personnel (CAPES). The authors are also grateful to the Graduate Program in Biomaterials Engineering from Federal University of Lavras (UFLA) and State University of Amapá (UEAP) (finance code 0022.0279.1202.0016/2021).

  1. Conflict of interest: The authors declare that there are no conflicts of interest.

References

Amorim, J.D.P., Souza, K.C., Duarte, C.R., Duarte, I.S., Ribeiro, F.A.S., Silva, G.S., Farias, P.M.A., Stingl, A., Costa, A.F.S., Vinhas, G.M., Sarubbo, L.A. (2020) Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 18:851–869. 10.1007/s10311-020-00989-9.Search in Google Scholar

Andriani, D., Apriyana, A.Y., Karina, M. (2020) The optimization of bacterial cellulose production and its applications: a review. Cellulose 27:6747–6766. 10.1007/s10570-020-03273-9.Search in Google Scholar

ASTM standard (2002) D882-02. Standard test method for tensile properties of thin plastic sheeting.Search in Google Scholar

ASTM standard (2012) E104-02. Standard practice for maintaining constant relative humity by means of aqueous solutions.Search in Google Scholar

ASTM standard (2016) E96/E96M. Standard Test Methods for Water Vapor Transmission of Materials.Search in Google Scholar

Bačovská, R., Wisian, N.P., Alberti, M., Příhoda, J., Zárybnická, L., Voráč, Z. (2016) Phenyl-methyl phosphazene derivatives for preparation and modification of hydrophobic properties of polymeric nonwoven textiles. React. Funct. Polym. 100:53–63. DOI: 10.1016/j.reactfunctpolym.2015.12.013.Search in Google Scholar

Basu, A., Vadanan, S.V., Lim, S. (2018) A novel platform for evaluating the environmental impacts on bacterial cellulose production. Sci. Rep. 8:5780. 10.1038/s41598-018-23701-y.Search in Google Scholar PubMed PubMed Central

Bassem, B., Ragauskas, A.J. (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod. Biorefining 5:215–225. 10.1002/bbb.269.Search in Google Scholar

Blanco, A., Monte, M.C., Campano, C., Balea, A., Merayo, N., Negro, C. (2018) Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In: Handbook of Nanomaterials for Industrial Applications, Ed. Hussain, C.M., Elsevier, Amsterdam. pp. 74–126. 10.1016/B978-0-12-813351-4.00005-5.Search in Google Scholar

Cacicedo, M.L., Castro, M.C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., Castro, G.R. (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 213:172–180. 10.1016/j.biortech.2016.02.071.Search in Google Scholar PubMed

Cazón, P., Vázquez, M., Velazquez, G.. (2019) Composite films with UV-barrier properties based on bacterial cellulose combined with chitosan and poly (vinyl alcohol): study of puncture and water interaction properties. Biomacromolecules 20:2084–2095. 10.1021/acs.biomac.9b00317.Search in Google Scholar PubMed

Cazón, P., Velazquez, G., Vázquez, M. (2020a) Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocoll. 99:105323. 10.1016/j.foodhyd.2019.105323.Search in Google Scholar

Cazón, P., Velazquez, G., Vásquez, M. (2020b) Bacterial cellulose films: Evaluation of the water interaction. Food Packaging Shelf Life 25:100526. 10.1016/j.fpsl.2020.100526.Search in Google Scholar

Cazón, P., Vázquez, M. (2021) Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocoll. 113:06514. 10.1016/j.foodhyd.2020.106514.Search in Google Scholar

Chen, W., Yu, H., Lee, S.Y., Wei, T., Li, J., Fan, Z. (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47:2837. 10.1039/c7cs00790f.Search in Google Scholar

Chung, D.D.L. (2005) Dispersion of short fibers in cement. J. Mater. Civ. Eng. 17:379–383. 10.1061/(ASCE)0899-1561(2005)17:4(379).Search in Google Scholar

Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F., Dudas, S.E. (2019) Human consumption of microplastics. Environ. Sci. Technol. 53:7068–7074. 10.1021/acs.est.9b01517.Search in Google Scholar PubMed

Desmaisons, J., Boutonnet, E., Rueff, M., Dufresne, A., Bras, J. (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr. Polym. 15:318–329. 10.1016/j.carbpol.2017.06.032.Search in Google Scholar PubMed

Dhar, P., Sugimura, K., Yoshioka, M., Yoshinaga, A., Kamitakahara, H. (2021) Synthesis-property-performance relationships of multifunctional bacterial cellulose composites fermented in situ alkali lignin medium. Carbohydr. Polym. 252:117114. 10.1016/j.carbpol.2020.117114.Search in Google Scholar PubMed

Dias, M.C., Mendonça, M.C., Damásio, R.A.P., Zidanes, U.L., Mori, F.A., Ferreira, S.R., Tonoli, G.H.D. (2019) Influence of hemicelluloses content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung 73:1035–1046. 10.1515/hf-2018-0230.Search in Google Scholar

Dilamian, M., Noroozi, B. (2019) A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 26:5831–5849. 10.1007/s10570-019-02469-y.Search in Google Scholar

Durães, A.F.S., Moulin, J.C., Dias, M.C., Mendonça, M.C., Damásio, R.A.P., Thygesen, L.G., Tonoli, G.H.D. (2020) Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations. Holzforschung (online). 10.1515/hf-2019-0237.Search in Google Scholar

Durães, A.F.S., Moulin, J.C., Santos, A.A., Silva, M.J.F., Damásio, R.A.P., Tonoli, G.H.D. (2021) Optimization of Cellulose Nanofibril Production under Enzymatic Pretreatment and Evaluation of Dislocations in Plant Fibers. Fiber Polym. (online). 10.1007/s12221-021-0810-7.Search in Google Scholar

Faria-Tischer, P.C.S., Tischer, C.A., Heux, L., Denmat, S.L., Picart, C., Sierakowski, M.R., Putaux, J.L. (2015) Preparation of cellulose II and III films by allomorphic conversion of bacterial cellulose I pellicles. Mater. Sci. Eng. C 51:167–173. 10.1016/j.msec.2015.02.025.Search in Google Scholar PubMed

Ferrer, A., Pal, L., Hubbe, M. (2017) Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crop. Prod. 95:574–582. 10.1016/j.indcrop.2016.11.012.Search in Google Scholar

Fillat, A., Martínez, J., Valls, C., Cusola, O., Roncero, M.B., Vidal, T., Valenzuela, S.V., Diaz, P., Pastor, F.I.J. (2018) Bacterial cellulose for increasing barrier properties of paper products. Cellulose 25:6093–6105. 10.1007/s10570-018-1967-0.Search in Google Scholar

Fonseca, C.S., Silva, T.F., Silva, M.F., Oliveira, I.R.C., Mendes, R.F., Hein, P.R.G., Mendes, L.M., Tonoli, G.H.D. (2016) Eucalyptus cellulose micro/nanofibrils in extruded fibercement composites. Cerne 22:59–68. 10.1590/01047760201622012084.Search in Google Scholar

Fonseca, C.S., Scatolino, M.V., Silva, L.E., Martins, M.A., Guimarães Jr, M., Tonoli, G.H.D. (2021) Valorization of Jute Biomass: Performance of Fiber-Cement Composites Extruded with Hybrid Reinforcement (Fibers and Nanofibrils). Waste Biomass Valoriz. 12:5743–5761. 10.1007/s12649-021-01394-1.Search in Google Scholar

Freire, C.S.R., Fernandes, S.C.M., Silvestre, A.J.D., Pascoal Neto, C. (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro-a review. Holzforschung 67:603–612. 10.1515/hf-2012-0127.Search in Google Scholar

Gao, M., Li, J., Bao, Z., Hu, M., Nian, R., Feng, D., An, D., Li, X., Xian, M., Zhang, H. (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat. Commun. 10:437. 10.1038/s41467-018-07.Search in Google Scholar

Gea, S., Reynolds, C.T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., Peijs, T. (2011) Investigation into the structural, morphological, mechanical and thermal behavior of bacterial cellulose after a twostep purification process. Bioresour. Technol. 102:9105–9110. 10.1016/j.biortech.2011.04.077.Search in Google Scholar PubMed

Guan, F., Chen, S., Sheng, N., Chen, Y., Yao, J., Pei, Q., Wang, H. (2019) Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. (online) 10.1016/j.cej.2018.11.202.Search in Google Scholar

Guimarães Jr, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli, G.H.D. (2015) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind. Crop. Prod. 70:72–83. 10.1016/j.indcrop.2015.03.014.Search in Google Scholar

Gullo, M., Sola, A., Zanichelli, G., Montorsi, M., Messori, M., Giudici, P. (2017) Increased production of bacterial cellulose as starting point for scaled-up applications. Appl. Microbiol. Biotechnol. 101:8115–8127. 10.1007/s00253-017-8539-3.Search in Google Scholar PubMed

Han, J., Shim, E., Kim, H.R. (2019) Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Tex. Res. J. 89:1094–1104. 10.1177/0040517518763989.Search in Google Scholar

Hussain, Z., Sajjad, W., Khan, T., Wahid, F. (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911. 10.1007/s10570-019-02307-1.Search in Google Scholar

Jozala, A.F., Lencastre-Novaes, L.C., Lopes, A.M., Santos-Ebinuma, V.C., Mazzola, P.G., Pessoa Jr., A., Grotto, D., Gerenutti, M., Chaud, M.V. (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl. Microbiol. Biotechnol. 100:2063–2072. 10.1007/s00253-015-7243-4.Search in Google Scholar PubMed

Kafle, K., Shin, H., Lee, C.M., Park, S., Kim, S.H. (2015) Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Sci. Rep. 5:15102. 10.1038/srep15102.Search in Google Scholar PubMed PubMed Central

Kamel, R., El-Wakil, N.A., Dufresne, A., Elkasabgy, N.A. (2020) Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol.. 163:1579–1590. 10.1016/j.ijbiomac.2020.07.242.Search in Google Scholar PubMed

Kaur, M., Mehta, A., Bhardwaj, K.K., Gupta, R. (2020) Bionanomaterials from Agricultural Wastes. In: Green Nanomaterials. Eds. Ahmed, S., Ali, W. Springer, Singapore. pp. 243–260.10.1007/978-981-15-3560-4_10Search in Google Scholar

Kongruan, S. (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl. Biochem. Biotechnol. 148:245–256.10.1007/s12010-007-8119-6Search in Google Scholar PubMed

Kwak, H.W., Park, J., Yun, H., Jeon, K., Kang, D.W. (2021) Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocoll. 111:106259. 10.1016/j.foodhyd.2020.106259.Search in Google Scholar

Lago, R.C., Oliveira, A.L.M., Dias, M.C., Carvalho, E.E.N., Tonoli, G.H.D., Vilas Boas, E.V.B. (2020) Obtaining cellulosic nanofibrils from oatstraw for biocomposite reinforcement: Mechanical and barrier properties. Ind. Crop. Prod. 148:112264.10.1016/j.indcrop.2020.112264Search in Google Scholar

Lavers, J.L., Dicks, L., Dicks, M.R., Finger, A. (2019) Significant plastic accumulation on the Cocos (Keeling) Islands, Australia. Sci. Rep. 9:7102. 10.1038/s41598-019-43375-4.Search in Google Scholar PubMed PubMed Central

Lavoine, N., Desloges, I., Khelifi, B., Bras, J. (2014) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J. Mater. Sci. 49:2879–2893. 10.1007/s10853-013-7995-0.Search in Google Scholar

Lee, K.Y., Tammelin, T., Schulfter, K., Kiiskinen, H., Samela, J., Bismarck, A. High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. Appl. Mater. Interfaces 4:4078–4086. 10.1021/am300852a.Search in Google Scholar PubMed

Lee, K.Y., Yvonne, A., Berglund, L.A., Oksman, K., Bismarck, A. (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105:15–27. 10.1016/j.compscitech.2014.08.032.Search in Google Scholar

Levanič, J., Šenk, V.P., Nadrah, P., Poljanšek, I., Oven, P., Haapala, A. (2020) Analyzing TEMPO-oxidized cellulose fiber morphology: New insights into optimization of the oxidation process and nanocellulose dispersion quality. ACS Sustain. Chem. Eng. 8:17752–17762. 10.1021/acssuschemeng.0c05989.Search in Google Scholar

Lin, D., Liu, Z., Shen, R., Chen, S., Yang, X. (2020) Bacterial cellulose in food industry: Current research and future prospects. Int. J. Biol. Macromol. 158:1007–1019.10.1016/j.ijbiomac.2020.04.230Search in Google Scholar PubMed

Lindström, T., Österberg, F. (2020) Evolution of biobased and nanotechnology packaging – a review. Nord. Pulp Pap. Res. J. 35:491–515. 10.1515/npprj-2020-0042.Search in Google Scholar

Lopes, T.A., Bufalino, L., Claro, P.I.C.C., Martins, M.A., Tonoli, G.H.D., Mendes, L.M. (2018) The effect of surface modifications with corona discharge in Pinus and Eucalyptus nanofibril films. Cellulose 25:5017–5033.10.1007/s10570-018-1948-3Search in Google Scholar

Luo, H., Xiong, G., Li, Q., Ma, C., Zhu, Y., Guo, R., Wan, Y. (2014) Preparation and properties of a novel porous poly (lactic acid) composite reinforced with bacterial cellulose nanowhiskers. Fiber Polym. 15:2591–2596.10.1007/s12221-014-2591-8Search in Google Scholar

Ma, C., Cao, W.-T., Zhang, W., Ma, M.-G., Sun, W.-M., Zhang, J., Chen, F. (2020) Wearable, Ultrathin and Transparent Bacterial Celluloses/MXene Film with Janus Structure and Excellent Mechanical Property for Electromagnetic Interference Shielding. Chem. Eng. J. 126438. 10.1016/j.cej.2020.126438.Search in Google Scholar

Martins, M.P., Dagostin, J.L.A., Franco, T.S., Muñiz, G.I.B., Masson, M.L. (2020) Application of cellulose nanofibrils isolated from an agroindustrial residue of peach palm in cassava starch films. Food Biophys. 15:323–334.10.1007/s11483-020-09626-ySearch in Google Scholar

Mashkour, M., Sharifinia, M., Yousefi, H., Afra, E. (2018) MWCNT-coated cellulose nanopapers: Droplet-coating, process factors, and electrical conductivity performance. Carbohydr. Polym. 202:504–512. 10.1016/j.carbpol.2018.09.006.Search in Google Scholar PubMed

Matos, L.C., Rompa, V.D., Damásio, R.A.P., Marconcini, J.M., Tonoli, G.H.D. (2019) Incorporation of nanomaterials and emulsion of waxes in the development of multilayer papers. Sci. For. 47:177–191.10.18671/scifor.v47n122.01Search in Google Scholar

Mautner, A., Mayer, F., Hervy, M., Lee, K.Y., Bismarck, A. (2018) Better together: synergy in nanocellulose blends. Philos. Trans. R. Soc. A 376:20170043. 10.1098/rsta.2017.0043.Search in Google Scholar PubMed PubMed Central

Megashah, L.N., Ariffin, H., Zakaria, M.R., Hassan, M.A., Andou, Y., Padzil, F.N.M. (2020) Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose 27:7417–7429. 10.1007/s10570-020-03296-2.Search in Google Scholar

Minelli, M., Baschetti, M.G., Doghieri, F., Ankerfors, M., Lindström, T., Siró, I., Plackett, D. (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J. Membr. Sci. 358:67–75. 10.1016/j.memsci.2010.04.030.Search in Google Scholar

Molina-Ramírez, C., Castro, C., Zuluaga, R., Gañán, P. (2018) Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J. Polym. Environ. 26:830–837.10.1007/s10924-017-0993-6Search in Google Scholar

Nehra, P., Chauhan, R.P. (2020) Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. J. Biomater. Sci. 32:112–149.10.1080/09205063.2020.1817706Search in Google Scholar PubMed

Osorio, F., Valdés, G., Skurtys, O., Andrade, R., Villalobos-Carvajal, R., Silva-Weiss, A., Silva-Vera, W., Giménez, B., Zamorano, M., Lopez, J. (2018) Surface free energy utilization to evaluate wettability of hydrocolloid suspension on different vegetable epicarps. Coatings 8:16.10.3390/coatings8010016Search in Google Scholar

Qiu, K., Netravali, A.N. (2014) A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym. Rev. 54:598–626.10.1080/15583724.2014.896018Search in Google Scholar

R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019.Search in Google Scholar

Rahman, S.S.A., Vaishnavi, T., Vidyasri, G.S., Sathya, K., Priyanka, P., Venkatachalam, P., Karuppiah, S. (2021) Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci. Rep. 11:2912. 10.1038/s41598-021-82596-4.Search in Google Scholar PubMed PubMed Central

Ravindran, L., Sreekala, M.S., Thomas, S. (2019) Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. Int. J. Biol. Macromol. 131:858–870.10.1016/j.ijbiomac.2019.03.134Search in Google Scholar PubMed

Rebelo, A., Archer, A.J., Chen, X., Liu, C., Yang, G., Liu, Y. (2018) Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci. Technol. Adv. Mater. 19:203–211.10.1080/14686996.2018.1430981Search in Google Scholar PubMed PubMed Central

Retegi, A., Gabilondo, N., Penã, C., Zuluanga, R., Castro, C., Ganãn, P., Caba, K., Mondragon, I. (2010) Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17:661–669.10.1007/s10570-009-9389-7Search in Google Scholar

Sá, N.M.S.M., Mattos, A.L.A., Silva, L.M.A., Brito, E.S., Rosa, M.F., Azeredo, H.M.C. (2020) From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int. J. Biol. Macromol. 161:1337–1345.10.1016/j.ijbiomac.2020.07.269Search in Google Scholar PubMed

Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A.M., Al-Mulla, Y.A. (2018) Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Dry. Technol. 36:1292–1303. 10.1080/07373937.2017.1400557.Search in Google Scholar

Scatolino, M.V., Bufalino, L., Mendes, L.M., Guimarães Jr, M., Tonoli, G.H.D. (2017a) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci. Technol. 51:1095–1115.10.1007/s00226-017-0927-4Search in Google Scholar

Scatolino, M.V., Silva, D.W., Bufalino, L., Tonoli, G.H.D., Mendes, L.M. (2017b) Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Proc. Eng. 200:155–161.10.1016/j.proeng.2017.07.023Search in Google Scholar

Scatolino, M.V., Dias, M.C., Silva, D.W., Bufalino, L., Martins, M.A., Piccoli, R.H., Tonoli, G.H.D., Londero, A.A., Oenning Neto, V., Mendes, L.M. (2019) Tannin-stabilized silver nanoparticles and citric acid added associated to cellulose nanofibrils: effect on film antimicrobial properties. SN Appl. Sci. 1:1243. 10.1007/s42452-019-1289-3.Search in Google Scholar

Scatolino, M.V., Fonseca, C.S., Gomes, M.S., Rompa, V.D., Martins, M.A., Tonoli, G.H.D., Mendes, L.M. (2018) How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers. Eur. J. Wood Prod. 76:1581–1594. 10.1007/s00107-018-1343-7.Search in Google Scholar

Schaber, C.F., Kreitschitz, A., Gorb, S.N. (2018) Friction-active surfaces based on free-standing anchored cellulose nanofibrils. ACS Appl. Mater. Interfaces 10:37566–37574. 10.1021/acsami.8b05972.Search in Google Scholar PubMed

Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675. 10.1038/nmeth.2089.Search in Google Scholar PubMed PubMed Central

Silva, E.L., Vieira, H.C., Santos, J.X., Nisgoski, S., Saul, C.K., Muñiz, G.I.B. (2019) Nanofibrillated cellulose, the small promising fiber: characteristics and potentialities. Floresta 49:411–420. 10.5380/rf.v49i3.58864.Search in Google Scholar

Silva, L.C.E., Cassago, A., Battirola, L.C., Gonçalves, M.C., Portugal, R.V. (2020) Specimen preparation optimization for size and morphology characterization of nanocellulose by TEM. Cellulose 27:5435–5444. 10.1007/s10570-020-03116-7.Search in Google Scholar

Singhsa, P., Narain, R., Manuspiya, H. (2018) Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose 25:1571–1581. 10.1007/s10570-018-1699-1.Search in Google Scholar

Sothornvit, R., Hong, S.I., An, D.J., Rhim, J.W. (2010) Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. LWT Food Sci. Technol. 43:279–284. 10.1016/j.lwt.2009.08.010.Search in Google Scholar

Suryanto, H., Sutrisno, T.A., Muhajir, M., Zakia, N., Yanuhar, U. (2018) Effect of peroxide treatment on the structure and transparency of bacterial cellulose film. EDP Sci. 204:05015. 10.1051/matecconf/201820405015.Search in Google Scholar

Tang, X., Liu, G., Zhang, H., Gao, X., Li, M., Zhang, S. (2021) Facile preparation of all-cellulose composites from softwood, hardwood, and agricultural straw cellulose by a simple route of partial dissolution. Carbohydr. Polym. 256:117591. 10.1016/j.carbpol.2020.117591.Search in Google Scholar PubMed

TAPPI standard (2004) T 458. CM-04, surface wettability of paper (angle of contact method).Search in Google Scholar

TAPPI standard (2012) T 559. CM-12, grease resistance test for paper and paperboard.Search in Google Scholar

Tomé, L.C., Brandão, L., Mendes, A.M., Silvestre, A.J.D., Neto, C.P., Gandini, A., Freire, C.S.R., Marrucho, I.M. (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211. 10.1007/s10570-010-9457-z.Search in Google Scholar

Tonoli, G.H.D., Holtman, K.M., Glenn, G., Fonseca, A.S., Wood, D., Williams, T., Sa, V.A., Torres, L., Klamczynski, A., Orts, W.J. (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestated and high shear mixing. Cellulose 23:1239–1256.10.1007/s10570-016-0890-5Search in Google Scholar

Tonoli, G.H.D., Savastano, H., Fuente, E., Negro, C., Blanco, A., Rocco Lahr, F.A. (2010) Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crop. Prod. 31:225–232.10.1016/j.indcrop.2009.10.009Search in Google Scholar

Tonoli, G.H.D., Sa, V.A., Guimaraes Junior, M., Fonseca, A.S., Glenn, G., Moulin, J., Phantapulakkal, S., Sain, M., Wood, D., Williams, T., Torres, L., Orts, W.J. (2019) Cellulose sheets made from micro/nanofibrillated fibers of bamboo, jute and eucalyptus cellulose pulps. Cellul. Chem. Technol. 53:291–305.10.35812/CelluloseChemTechnol.2019.53.29Search in Google Scholar

Trache, D., Thakur, V.K., Boukherroub, R. (2020) Cellulose nanocrystals/graphene hybrids - a promising new class of materials for advanced applications. Nanomaterials 10:1523.10.3390/nano10081523Search in Google Scholar PubMed PubMed Central

Trigui, K., Loubens, C., Magnin, A., Putaux, J.L., Boufi, S. (2020) Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency. Carbohydr. Polym. 240:116342. 10.1016/j.carbpol.2020.116342.Search in Google Scholar PubMed

Tyagi, P., Lucia, L.A., Hubbe, M.A., Pal, L. (2019) Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydr. Polym. 206:281–288.10.1016/j.carbpol.2018.10.114Search in Google Scholar PubMed

Uraki, Y., Morito, M., Kishimoto, T., Sano, Y. (2002) Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56:341–347.10.1515/HF.2002.054Search in Google Scholar

Vieira, D.M., Senna, B.T.G., Ishii, M., Penna, T.V. (2013) Bacterial Cellulose Production by Acetobacter xylinum and Saccharomyces Cerevisiae in Green Tea Leaves and Fruits Juice Medium. Asian J. Pharm. Health Sci. 3:690–698.Search in Google Scholar

Wang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., Feng, X. (2018) Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. Int. J. Biol. Macromol. 118:722–730.10.1016/j.ijbiomac.2018.06.089Search in Google Scholar PubMed

Wang, S., Jiang, F., Xu, X., Kuang, Y., Fu, K., Hitz, E., Hu, L. (2017) Super-strong, super‐stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29:1702498. 10.1002/adma.201702498.Search in Google Scholar PubMed

Wu, S., Li, M. (2015) Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J. Biosci. Bioeng. 120:444–449.10.1016/j.jbiosc.2015.02.018Search in Google Scholar PubMed

Xie, H., Yang, C., Fu, K., Yao, Y., Jiang, F., Hitz, E., Liu, B., Wang, S., Hu, L. (2018) Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mat. 8:1703474.10.1002/aenm.201703474Search in Google Scholar

Xu, S., Liu, D., Zhang, Q., Fu, Q. (2018) Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix. Compos. Sci. Technol. 156:117–126. 10.1016/j.compscitech.2017.12.017.Search in Google Scholar

Yin, H., Wei, X., Bao, R., Dong, Q., Liu, Z., Yang, W., Xie, B., Yang, M. (2015) Enhancing Thermomechanical Properties and Heat Distortion Resistance of Poly(l-lactide) with High Crystallinity under High Cooling Rate. Sustain. Chem. Eng. 3:654–661.10.1021/sc500783sSearch in Google Scholar

Yook, S., Park, H., Park, H., Lee, S.Y., Kwon, J., Youn, H.J. (2020) Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose 27:4509–4523. 10.1007/s10570-020-03061-5.Search in Google Scholar

Yousefi, H., Faezipour, M., Hedjazi, S., Mousavi, M.M., Azusa, Y., Heidari, A.H. (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind. Crop. Prod. 43:732–737. 10.1016/j.indcrop.2012.08.030.Search in Google Scholar

Yuwawech, K., Wootthikanokkhan, J., Tanpichai, S. (2015) Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol) Composite Films. J. Nanomater. 2015:908689. 10.1155/2015/908689.Search in Google Scholar

Vilela, C., Pinto, R.J.B., Figueiredo, A.R.P., Pascoal Neto, C., Silvestre, A.J.D., Freire, C.S.R. (2017) Development and applications of cellulose nanofibres based polymer nanocomposites. In: Advanced Composite Materials: Properties and Applications. Ed. Bafekrpour, E. De Gruyter, Berlin. pp. 1–65. 10.1515/9783110574432-001.Search in Google Scholar

Zeng, M., Laromaine, A., Roig, A. (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469. 10.1007/s10570-014-0408-y.Search in Google Scholar

Zeng, J., Liu, L., Li, J., Dong, J., Cheng, Z. (2020) Properties of cellulose nanofibril produced from wet ball milling after enzymatic treatment vs. mechanical grinding of bleached softwood Kraft fibers. BioResources 15:3809–3820.10.15376/biores.15.2.3809-3820Search in Google Scholar

Received: 2021-05-15
Accepted: 2021-11-29
Published Online: 2022-01-11
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Chemical pulping
  3. Evaluation of fines separation from unbleached softwood kraft pulp using microperforated hole screens
  4. Evaluation of pulp and paper making properties of Caesalpinia decapetela
  5. Novel bulking technologies for cellulose fibres
  6. Mechanical pulping
  7. Interpretation of force profiles in mill-scale LC refining
  8. Effects of plate wear on bar forces and fiber properties in a mill scale LC-refiner
  9. Paper technology
  10. Research on the physical properties of calcium sulfate whisker and the effects of its addition on paper and its printing performance
  11. Preparation and properties of an intelligent adjustable functional paper for organic cultural relics
  12. Paper chemistry
  13. Application of DSA to improve strength of thermomechanical pulp blended paper
  14. Coating
  15. The influence of pigment modulus on failure resistance of paper barrier coatings
  16. Effect of filler additions on pilot-scale extrusion coating of paperboard with PLA-based blends
  17. Packaging
  18. Influence of paper properties on adhesive strength of starch gluing
  19. Environmental impact
  20. Interfering elements on determination of hexavalent chromium in paper materials with UV-vis spectrophotometry
  21. Nanotechnology
  22. Enhanced mechanical and gas barrier performance of plasticized cellulose nanofibril films
  23. Lignin
  24. The preparations of nanoporous carbon with multi-heteroatoms co-doping from black liquor powders for supercapacitors
  25. Miscellaneous
  26. Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties
  27. Mass-balance based soft sensor for monitoring ash content at two-ply paperboard manufacturing
  28. Investigation of the effect of light fastness on the color changes of maps prepared by electrophotographic digital printing
  29. Bulking of cellulose fibres – a review
  30. Preparation of O-HACC/HEC-acrylate emulsion and its application in paper protection
  31. Mineral-filled biopolyester coatings for paperboard packaging materials: barrier, sealability, convertability and biodegradability properties
Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/npprj-2021-0036/html
Scroll to top button