Home Physical Sciences 6-(Diphenylphosphoryl)-3,3′,6′-tris(10H-phenoxazin-10-yl)-[1,1′-biphenyl]-2,2′-dicarbonitrile, C62H38N5O4P
Article Open Access

6-(Diphenylphosphoryl)-3,3′,6′-tris(10H-phenoxazin-10-yl)-[1,1′-biphenyl]-2,2′-dicarbonitrile, C62H38N5O4P

  • Zhenlong Tu and Bangjin Sun ORCID logo EMAIL logo
Published/Copyright: June 4, 2025

Abstract

C62H38N5O4P, monoclinic, P21/n (no. 14), a = 13.8942(6) Å, b = 16.1867(7) Å, c = 21.2705(8) Å, β = 97.716(2)°, V = 4740.4(3) Å3, Z = 4, R gt (F) = 0.0401, wR ref(F 2) = 0.1066, T = 190 K.

CCDC no.: 2429520

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Red block
Size 0.09 × 0.06 × 0.05 mm
Wavelength: Ga Kα radiation (1.34139 Å)
μ: 0.63 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θ max, completeness: 53.9°, 99 %
N(hkl)measured, N(hkl)unique, R int: 27505, 8540, 0.030
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 6924
N(param)refined: 729
Programs: Bruker, 1 Olex2, 2 SHELX 3 , 4

1 Source of materials

The starting material 6-fluoro-3,3′,6′-tri(10H-phenoxazin-10-yl)-[1,1′-biphenyl]-2,2′-dicarbonitrile was prepared according to literature. 5 6-fluoro-3,3′,6′-tri(10H-phenoxazin-10-yl)-[1,1′-biphenyl]-2,2′-dicarbonitrile (2.29 g, 3.0 mmol), diphenylphosphane (0.37 g, 2.0 mmol) and caesium carbonate (0.98 g, 3.0 mmol) in N,N-dimethylformamide (DMF, 30 mL) was stirred and refluxed for 12 h. Cooling to room temperature, 10 mL hydrogen peroxide was added and stirred for half an hour. The mixture was diluted with 100 mL water, and extracted with ethyl acetate (3 × 30 mL). The combined organic layer was concentrated under reduced pressure and was further purified by silica gel column chromatography to red solid (1.56 g, 1.65 mmol, 55.0 % yield) and recrystallized from methanol and dichloromethane to obtain the red block crystals.

2 Experimental details

Using Olex2, 2 the structure was solved with the ShelXS 3 structure solution program using Direct Methods and refined with the ShelXL 4 refinement package.

3 Comment

TADF (thermally activated delayed fluorescence) materials typically adopt a D-π-A (donor-π spacer-acceptor) molecular architecture, which facilitates the reduction of the singlet-triplet energy gap (Δ EST). Under thermal activation, these materials enable triplet excitons to participate in luminescence via reverse intersystem crossing (RISC), theoretically achieving 100 % internal quantum efficiency (IQE), making them highly promising candidates for next-generation display and lighting technologies. 6

The title molecule employs phenoxazine as the electron donor and cyano/diphenylphosphine oxide (DPPO) groups as dual acceptors. Theoretical calculations reveal spatially separated frontier molecular orbitals: the HOMO is predominantly localized on the phenoxazine moiety, while the LUMO resides on the cyano and DPPO units. This minimal spatial overlap between HOMO and LUMO significantly reduces Δ EST, a critical feature for efficient TADF behavior.

Structurally, all bond lengths are in the expected ranges.

The N–C–C bond angles in the cyano groups are 176° and 178° respectively, approaching linear geometry. The C–P–O bond angles consistently measure 114°.

The dihedral angle between the two benzene rings in the biphenyl group is 79°, indicating significant torsional distortion. The phenoxazine moietes are all folded (see the figure). Thus, the dihedral angles between the phenoxazine core and adjacent benzene rings are 84°, 86°, and 89°, respectively. These pronounced torsional configurations–consistent with strategies reported in planarized D–A systems–disrupt π-conjugation and enforce spatial separation of charge densities, thereby suppressing non-radiative recombination pathways. In summary, this molecule has a certain application prospect in the field of luminescence and display.


Corresponding author: Bangjin Sun, School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Jianshe North Road, Chenghua District, Chengdu, P.R. China, E-mail:

  1. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  2. Research funding: This work is supported by the China Postdoctoral Science Foundation (2022M710020).

  3. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. BRUKER SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure Determination. Acta Cryst. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Tu, Z.-L.; Lu, J.-J.; Luo, X.-F.; Hu, J.-J.; Li, S.; Wang, Y.; Zheng, Y.-X.; Zuo, J.-L.; Pan, Y. Blue Axially Chiral Biphenyl Based Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Oleds. Adv. Opt. Mater. 2021, 9, 2100596; https://doi.org/10.1002/adom.202100596.Search in Google Scholar

6. Tu, Z.-L.; Hu, L.-Y.; Wang, J.-Y.; Wang, C.; Xiao, X.; Luo, X.-F. Ring-Extended Carbazole Modification to Activate Efficient Phosphorescent OLED Performance of Traditional Host Materials. Chem. Commun. 2024, 60, 12421; https://doi.org/10.1039/d4cc04537h.Search in Google Scholar PubMed

Received: 2025-03-14
Accepted: 2025-04-29
Published Online: 2025-06-04
Published in Print: 2025-08-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Hydrothermal synthesis, crystal structure of [K3:N1:N2:N4-3-(pyridin-2-yl)-1,2,4-triazole] binuclear Ni(II) complex[Ni2(C7H5N4)2(C7H4ClO2)2]
  4. The crystal structure of di(thiocyanato-κ1N)-bis(methanol)-di(1,3-bis((pyridin-4-ylthio)methyl)benzene)-iron(II), C40H40FeN6O2S6
  5. Crystal structure of poly[(μ 3-3,3″,5,5″-tetrafluoro-(1,1′:4′,1″-terphenyl)-4,4″-dicarboxylate-κ 3 O,O:O″)-(μ 4-3,3″,5,5″-tetrafluoro-(1,1′:4′,1″-terphenyl)-4,4″-dicarboxylate-κ 4 O,O,O,O‴)-dicadmium(II)]dimethylformamide solvate, C47H30Cd2F8N3O12
  6. The crystal structure of a 3d-4f complex based on 2-(benzo[d]thiazol-2-yl)-6-methoxyphenol C31H27N4O13S2CoEr
  7. Crystal structure of poly[(μ 2-1,4-bis(imidazol-1-yl)benzene-k 2 N:N′)(μ 4-biphenyl-3,3′,5,5′-tetracarboxylic-k 4 O,O,O,O)dizinc(II)] dihydrate, C40H28Zn2N8O9
  8. The crystal structure of 4-(bis(2-chloroethyl)amino)-2-hydroxybenzaldehyde, C11H13Cl2NO2
  9. Synthesis and crystal structure of-(10S,13S,16R,Z) −17-ethylidene-16-hydroxy-10,13-dimethylhexadecahydro-3 H-cyclopenta[α]phenanthren-3-one, C21H32O2
  10. The crystal structure of catena-((μ 2-4,4′-bipyridine-κ 2 N:N′)-bis(4-fluorobenzoato-κ1O)-copper(II)), C24H16F2N2O4Cu
  11. Crystal structure of catena-poly[(ethylenediamine-κ2 N,N′)-μ-tetraoxomolybdato(VI) zinc(II)], C2H8MoN2O4Zn
  12. The crystal structure of 4-chloro-1H-pyrazole-3-carboxylic acid, C4H3ClN2O2
  13. The crystal structure of bepotastine besilate, C27H31ClN2O6S
  14. The crystal structure of (η 6-p-cymene)benzyldiphenylphosphine-diiodido-ruthenium(II) dichloromethane solvate
  15. The crystal structure of poly[(μ 2-1-(1-imidazolyl)-4- (imidazol-1′-yl-methyl)benzene κ 2 N:N′)-(μ 2-3-nitrobenzene -1,2-dicarboxylato-k4,O,O′:O′′,O′′′]zinc(II)-κ 2, C21H15N5O6Zn
  16. The crystal structure of (2R,4S)-5-([1,1′-biphenyl]-4-yl)-4-((tert-butoxycarbonyl)amino)-2-methyl pentanoic acid, C23H29NO4
  17. The crystal strucure of [2,2′-{1,2-phenylenebis [(azanylylidene)methanylylidene]}bis(4-fluorophenolato)-κ4 N,N′,O,O′] nickel(II) N, N-dimethylformamide solvate, C23H19F2N3NiO3
  18. The structure of (E)-6-(cyclopropylmethyl)-11-(2,2-difluoropropylidene)-2-methyl-6, 11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C21H21F2NO2S
  19. Crystal structure of catena-poly[(μ 2-(2-(1H-imidazol-1-ylmethyl)benzyl)-1H-imidazole κ2N:N′)- (μ 2-cyclohexane-1,2-dicarboxylato κ2O,O′)cobalt(II) monohydrate]
  20. The crystal structure of 3,5,7-trinitro-1,3,5,7-oxatriazocane
  21. Crystal structure of poly[(μ2-nitrato-κ3 O,O′:O′′)(μ2-1-[(2-propyl-1H-benzimidazole-1-yl)methyl]-1H-benzotriazole-k2 N:N′)silver(I)], C17H17AgN6O3
  22. The crystal structure of (5-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-sulfanylidene-1,3,4-oxadiazol-3(2H)-yl)(3-methylphenyl)methanone, C18H14N2O4S
  23. The crystal structure of diaqua-bis[5-(4-methylphenyl)-1H-pyrazole-3-carboxylato-κ2N,O]-cobalt(II), C11H11Co0.5N2O3
  24. Crystal structure of 2-(6-methoxynaphthalen-2-yl)-N-(4-morpholinophenyl)propanamide, C24H26N2O3
  25. The crystal structure of sodium methylsulfonate
  26. Crystal structure of catena-poly[bis(isothiocyanate κ 1 N)-(μ 2-3,3ʹ-methylenebis(1-methyl-1,3-dihydro-2H-imidazole-2-thione)-κ 2 S:S′)-cobalt(II)], C11H12CoN6S4
  27. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1N)nickel(II)} (μ 2-oxo)-hexaoxido-di-molybdenum(VI)─1-methyl-1H-imidazole (1/2), C32H48NiMo2N16O7
  28. 6-(Diphenylphosphoryl)-3,3′,6′-tris(10H-phenoxazin-10-yl)-[1,1′-biphenyl]-2,2′-dicarbonitrile, C62H38N5O4P
  29. The crystal structure of R-2′-amino-N-methyl-N-(1-phenylethyl)-[1,1′-biphenyl]-4-carboxamide, C22H22N2O
  30. The crystal structure of bis{tetrakis(n-butyl)(μ-hydroxy)(2,3,5,6-tetrafluorobenzoate) (μ 3 -oxo)ditin(IV)}
  31. Crystal structure of catena-poly[aqua-(μ 2(3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylato-κ 2 O:O′)-(3,6-bis(4′-pyridyl)-1,2,4,5-tetrazine-κ 1 N)zinc(II)], C22H16N6O5S2Zn
  32. The crystal structure of 3-bromo-5-cyano–N-(5-(cyanomethyl)quinolin-8-yl)pentanamide, C19H15BrN4O
  33. The crystal structure of bis(tetramethylammonium) (di-μ2-aqua)hexaaqua-dibarium(II)) decavanadate
  34. The crystal structure of catena-poly(bis(μ 2-chlorido)- (μ 2-4′-(pyridin-4-yl)-2,2′:6′,2″-terpyridine–N′, N″, N‴:N″″) -chlorido-dicopper(I,II)) monohydrate, C20H16N4OCl3Cu2
  35. Crystal structure of spiropachysine, C31H46N2O
  36. Crystal structure of poly[aqua-(μ 2-3-bromoisonicotinato-κ 2 N: O)-(μ 2-3-bromoisonicotinato-κ 3 N: O: O′)-(μ 3-3-bromoisonicotinato-κ 3 N: O: O′)-(μ 2-nitrite-κ 3 O: O′: O″)dicadmium(II) monohydrate], C19H12Br3Cd2N3O9
  37. The crystal structure of 2-acetylpyridine-ortho-fluoro-phenylhydrazone, C14H12FN3O
  38. The crystal structure of poly(triaqua-(m 2-2,2′-bipyridine-4,4′-dicarboxylato-K 2 O:O′)-bis(m 2-2-2′-bipyridine-4,4′-dicarboxylato-K 4 O,O′:O″:O‴)dierbium(III)) hydrate, C36H26Er2N6O16
  39. The crystal structure of 1,1′-(phenazine-5,10-diyl)bis(heptan-1-one), C26H34N2O2
  40. The crystal structure of (4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)boronic acid, C21H16BN3O2
  41. Crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyrazine-5,7(6H)-dione, C6H3N3O3
  42. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide ethanol solvate, C23H30N2O4
  43. Crystal structure of pyridinium tetrakis[1,1,1-trifluoro-2,4-pentadionato-K2 O,O′]lutetium(III) C20F12H16LuO8C5H6N
  44. Crystal structure of dichlorido–tetrakis{3-((1H-1,2,4-triazol-1-yl)methyl)-1-(4-chlorophenyl)-4,4-dimethylpentan-3-ol-k 1N}cobalt(II), C64H88O4N12Cl6Co
  45. The crystal structure of tetrakis(4-allyl-2-methoxyphenyl nicotinato-k 1 N)bis(thiocyanato-k 1 N)cobalt(II)
  46. The crystal structure of methyl 4-(3,4-dichlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H21Cl2NO3
  47. The crystal structure of (E)–N-(4-chlorobenzylidene)(4-chlorophenyl)methanamine, C14H11Cl2N
  48. Crystal structure of (E)-4-(4-ethylbenzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H22O4
  49. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid dimethyl sulfoxide monosolvate, C4H2N3O4⋅C2H6OS
  50. Crystal structure of-(1S,4aR,5S)-5,6,7-trihydroxy-8-isopropyl-1-methyl-1,2,3,4,5,10,11,11a-octahydro-4a,1-(epoxymethano)dibenzo[a,d][7]annulen-13-one C20H26O5
  51. Crystal structure of 7,9-dimethoxy-2-methyl-4-propylbenzo[f]isoquinolin-5-yl 4-bromobenzoate, C26H24BrNO4
  52. Crystal structure of bis(N,N,N-trimethylbutanaminium)tridecathiotrimolybdate(2−), (BuMe3N)2[Mo3S13]
  53. Crystal structure of N-(adamantan-1-yl)-4-methylpiperazine-1-carbothioamide, C16H27N3S
  54. Crystal structure of poly[(μ 2-2,2′-[1,4-phenylenebis(methylenesulfanediyl)]dibenzoato-κ 4 O,O′:O″,O‴)-(μ 2-1,1′-([1,1′-biphenyl]-4,4′-diyl)bis(1H-benzimidazole)-κ 2 N:N′)cadmium(II)]dimethylformamide solvate, C51H41N5O5S2Cd
  55. The crystal structure of 2-benzoyl-3′,4′,5′,6′-tetrahydrospiro[isoindoline-1,2′-pyran]-3-one, C19H17NO3
  56. The crystal structure of 1-(4-cyanobenzyl)-4-phenyl-1,4-dihydropyridine-3-carbonitrile, C20H15N3
  57. Crystal structure of (1,3-dioxolan-2-ylmethyl)triphenylphosphonium bromide, C22H22BrO2P
  58. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] tetrachloridomanganese(II)
  59. The crystal structure of 2-(2-hydroxy-4-n-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, C33H39N3O2
  60. Crystal structure of catena-poly[aqua-(5-carboxypyridine-2-carboxylate-κ 2N,O)(2,5-pyridine-dicarboxylate-κ 4O,O′:N:O″)bismuth(III)], C14H9BiN2O9
  61. Crystal structure of (E)-1-fluoro-4-(2-(phenylsulfonyl)vinyl)benzene, C14H11FO2S
  62. Crystal structure of methyl 2-amino-3-chloro-4-methoxybenzoate, C9H10ClNO3
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0136/html?recommended=sidebar&srsltid=AfmBOoqT2MdrkwgyuVOlTStnPDRnQm_CL14lATUJasWGirH-Eox5eOIm
Scroll to top button