Home The crystal structure of 4-chloro-1H-pyrazole-3-carboxylic acid, C4H3ClN2O2
Article Open Access

The crystal structure of 4-chloro-1H-pyrazole-3-carboxylic acid, C4H3ClN2O2

  • DaoHang Du , ShiHong Zhu , Chao Feng ORCID logo , YunHua Jiang , Jia Yang , Ting Tao , ShuLi Yu and Hong Zhao ORCID logo EMAIL logo
Published/Copyright: April 30, 2025

Abstract

C4H3ClN2O2, monoclinic, C2/c (no. 15), a = 25.4370(17) Å, b = 6.9155(5) Å, c = 13.0629(7) Å, β = 110.558 (6)°, V = 2151.6 (3) Å3, Z = 16, R gt(F) = 0.0552, wR ref(F 2) = 0.2177, T = 293 K.

CCDC no.: 2424717

The molecular structure is depicted in the figure. Table 1 summarizes the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Clear light white needle
Size: 0.50 × 0.16 × 0.13 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.62 mm−1
Diffractometer, scan mode: Bruker Apex 2, φ and ω scans
θ max, completeness: 25.0°, 100 %
N(hkl)measured , N(hkl)unique, R int: 10791, 1895, 0.056
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1,641
N(param)refined: 173
Programs: Bruker, 1 Olex2, 2 SHELX, 3 , 4 Diamond 5

1 Source of materials

The title compound was synthesized starting from 1H-pyrazole-3-carboxylic acid (10 g, 89.30 mmol) dissolved in acetic acid (100 ml). Concentrated HCl (11.17 ml) was added dropwise under stirring at 40 C in an oil bath for 15 min, followed by the slow addition of an aqueous solution of sodium chlorate (NaClO3, 2.37 g in 20 ml H2O) over 30 min. The reaction mixture was stirred at 40 C for 5 h (monitored by TLC). After completion, the mixture was concentrated under reduced pressure, treated with ice-water (150 ml), and filtered under vacuum. The resulting solid was washed with cold water and dried to yield 4-chloro-1H-pyrazole-3-carboxylic acid as a white crystalline solid (9.5184 g, 72.75 %). Single crystals were obtained by slow evaporation using an ethyl acetate/methanol mixed solvent system. 1H-NMR (600 MHz, DMSO) δ 13.63 (s, 2H), 7.94 (s, 1H).

2 Results and discussion

Pyrazole-carboxylic acid compounds serve as versatile molecular platforms, 5 , 6 , 7 , 8 , 9 , 10 where the synergistic combination of the rigid conjugated system in the pyrazole ring and the strong coordination capability of the carboxylic acid group provides structural foundations for the controlled construction of metal complexes while imparting unique physicochemical properties. 11 , 12 , 13 , 14 , 15 The derived metal-organic frameworks (MOFs) have been extensively applied in environmental sensing and optoelectronic devices, with their proton conductivity offering novel insights for developing advanced energy materials. 16 , 17 , 18 , 19 Leveraging the site-tunability and conformational diversity of pyrazole-carboxylic acid derivatives, this work reports a compound incorporating this structural motif.

The asymmetric unit of the title compound comprises two complete 4-chloro-1H-pyrazole-3-carboxylic acid molecules linked via O4–H4⋯N1 (1.8549 Å) and N4–H4A⋯O3 (2.4830 Å) hydrogen bonds. Structural analysis reveals C⋯N bond lengths (C1–N2, C3–N3, C8–N4, and C5–N1) ranging from 1.335 Å to 1.348 Å, consistent with values reported for 4-bromopyrazole analogues. 20 The C–Cl bond length of 1.712 Å aligns with typical ranges for analogous compounds, 21 , 22 further supporting the structural integrity of the framework. Intermolecular interactions dominate the extended architecture. Within the bc-plane, a two-dimensional grid is formed through three distinct hydrogen-bonding motifs: (i) pyrazole N⋯N interactions (N4–H4A⋯N2, 2.1654 Å), (ii) carboxyl O–pyrazole N interactions (N3–H3⋯O3, 2.2106 Å and N4–H4A⋯O3, 2.4830 Å), and (iii) carboxylic acid O⋯O interactions (O1–H1⋯O2, 1.8189 Å). Adjacent two-dimensional grids stack into a three-dimensional framework via N3–H3⋯O4 hydrogen bonds (2.8014 Å). These interactions, while within expected van der Waals distances, highlight the role of hydrogen bonding in stabilizing the supramolecular assembly.


Corresponding author: Hong Zhao, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, JiangSu, 210096, P.R. China, E-mail:

  1. Author contributions: The authors have acknowledged full accountability for the entirety of the content presented in this submitted manuscript and have given their approval for its submission.

  2. Research funding: This work was supported by Jiangsu Ainaji Neoenergy Science & Technology Co., Ltd. (8507040091), and the National Natural Science Foundation of China (81703366).

  3. Conflict of interest: The author hereby declares that there are no conflicts of interest pertaining to this article.

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339–341. https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

2. Sheldrick, G. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Section C 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Brandenburg, K.; Putz, H. Diamond. Crystal Impact GbR, Bonn, Germany 2006.Search in Google Scholar

5. Kumar Gupta, R.; Kallem, P.; Luo, G.–G.; Cui, P.; Wang, Z.; Banat, F.; Tung, C.–H.; Sun, D. 1H-Pyrazole-4-carboxylic Acid-based metal–organic Frameworks: Multifaceted Materials. Coord. Chem. Rev. 2023, 497, 215436; https://doi.org/10.1016/j.ccr.2023.215436.Search in Google Scholar

6. Tokumasu, K.; Yazaki, R.; Ohshima, T. Direct Catalytic Chemoselective α-Amination of Acylpyrazoles: A Concise Route to Unnatural α-Amino Acid Derivatives. J. Am. Chem. Soc. 2016, 138 (8), 2664–2669; https://doi.org/10.1021/jacs.5b11773.Search in Google Scholar PubMed

7. Somakala, K.; Amir, M. Synthesis, Characterization and Pharmacological Evaluation of Pyrazolyl Urea Derivatives as Potential Anti-inflammatory Agents. Acta Pharm. Sin. B 2017, 7 (2), 230–240; https://doi.org/10.1016/j.apsb.2016.08.006.Search in Google Scholar PubMed PubMed Central

8. Wang, B.; Wang, H.; Liu, H.; Xiong, L.; Yang, N.; Zhang, Y.; Li, Z. Synthesis and Structure-insecticidal Activity Relationship of Novel Phenylpyrazole Carboxylic Acid Derivatives Containing Fluorine Moiety. Chin. Chem. Lett. 2020, 31 (3), 739–745; https://doi.org/10.1016/j.cclet.2019.07.064.Search in Google Scholar

9. Utochnikova, V. V.; Abramovich, M. S.; Latipov, E. V.; Dalinger, A. I.; Goloveshkin, A. S.; Vashchenko, A. A.; Kalyakina, A. S.; Vatsadze, S. Z.; Schepers, U.; Bräse, S.; Kuzmina, N. P. Brightly Luminescent Lanthanide Pyrazolecarboxylates: Synthesis, Luminescent Properties and Influence of Ligand Isomerism. J. Lumin. 2019, 205, 429–439; https://doi.org/10.1016/j.jlumin.2018.09.027.Search in Google Scholar

10. Utochnikova, V. V.; Latipov, E. V.; Dalinger, A. I.; Nelyubina, Y. V.; Vashchenko, A. A.; Hoffmann, M.; Kalyakina, A. S.; Vatsadze, S. Z.; Schepers, U.; Bräse, S.; Kuzmina, N. P. Lanthanide Pyrazolecarboxylates for OLEDs and Bioimaging. J. Lumin. 2018, 202, 38–46; https://doi.org/10.1016/j.jlumin.2018.05.022.Search in Google Scholar

11. Lin, C.–L.; Chen, Y.–F.; Qiu, L.–J.; Zhu, B.; Wang, X.; Luo, S.–P.; Shi, W.; Yang, T.–H.; Lei, W. Synthesis, Structure and Photocatalytic Properties of Coordination Polymers Based on Pyrazole Carboxylic Acid Ligands. CrystEngComm 2020, 22 (41), 6847–6835; https://doi.org/10.1039/d0ce01054e.Search in Google Scholar

12. Radi, S.; El-Massaoudi, M.; Benaissa, H.; Adarsh, N. N.; Ferbinteanu, M.; Devlin, E.; Sanakis, Y.; Garcia, Y. Crystal Engineering of a Series of Complexes and Coordination Polymers Based on pyrazole-carboxylic Acid Ligands. New J. Chem. 2017, 41 (16), 8232–8241; https://doi.org/10.1039/c7nj01714f.Search in Google Scholar

13. Dahmani, M.; Et-Touhami, A.; Yahyi, A.; Harit, T.; Eddike, D.; Tillard, M.; Benabbes, R. Synthesis, Characterization, X-Ray Structure and in Vitro Antifungal Activity of Triphenyltin Complexes Based on Pyrazole Dicarboxylic Acid Derivatives. J. Mol. Struct. 2021, 1225, 129137; https://doi.org/10.1016/j.molstruc.2020.129137.Search in Google Scholar

14. Scatena, R.; Massignani, S.; Lanza, A. E.; Zorzi, F.; Monari, M.; Nestola, F.;; Pettinari, C.; Pandolfo, L. Synthesis of Coordination Polymers and Discrete Complexes from the Reaction of Copper(II) Carboxylates with Pyrazole: Role of Carboxylates Basicity. Cryst. Growth Des. 2021, 22 (2), 1032–1044; https://doi.org/10.1021/acs.cgd.1c00861.Search in Google Scholar

15. Yang, J. Pyrazole–3–carboxylates Assisted N–heterocyclic Carbene Palladium Complexes: Synthesis, Characterization, and Catalytic Activities Towards Arylation of Azoles with Arylsulfonyl Hydrazides. Appl. Organomet. Chem. 2020, 34 (3), e5450; https://doi.org/10.1002/aoc.5450.Search in Google Scholar

16. Kumar, S.; Arora, A.; Kumar, A.; Tomar, K. An Unsymmetrical Tritopic Pyrazole Carboxylate Ligand Based Porous Cd(II) MOF Sensor for Acetone Molecule. Inorg. Chem. Commun. 2018, 96, 16–19; https://doi.org/10.1016/j.inoche.2018.07.042.Search in Google Scholar

17. Kumar, A.; Bains, O.; Langyan, R.; Kumar, R.; Kumar, V.; Chetti, P.; Kamal, R.; Synthesis, C. Optoelectronic Properties and DFT Studies of Novel 4,5–Diarylpyrazole-1–Carboxylates. ChemistrySelect 2024, 9 (4), e202303934; https://doi.org/10.1002/slct.202303934.Search in Google Scholar

18. Yıldız, B.; Güzel, E.; Akyüz, D.; Arslan, B. S.; Koca, A.; Şener, M. K. Unsymmetrically pyrazole-3-carboxylic Acid Substituted Phthalocyanine-based Photoanodes for Use in Water Splitting Photoelectrochemical and dye-sensitized Solar Cells. Sol. Energy 2019, 191, 654–662; https://doi.org/10.1016/j.solener.2019.09.043.Search in Google Scholar

19. Hegde, V.; Sreekala, C. O.; Kulkarni, N. V.; Mathew, J. Bis(pyrazolyl)methane Supported Cobalt (II) Complexes as Sensitizers in dye-sensitized Solar Cells. J. Photochem. Photobiol., A: Chem. 2023, 449, 115389; https://doi.org/10.1016/j.jphotochem.2023.115389.Search in Google Scholar

20. Foces-Foces, C.; Llamas-Saiz, A.; Elguero, J. Crystal Structures of Two 4-bromopyrazole Derivatives. Z. Kristallogr. Cryst. Mater. 1999, 214 (4), 237–241.10.1524/zkri.1999.214.4.237Search in Google Scholar

21. Rue, K.; Raptis, R. G. Low-Temperature Crystal Structure of 4-chloro-1H-pyrazole. Acta Crystallogr. Section E Cryst. Commun. 2021, 77, 955–957. https://doi.org/10.1107/S2056989021008604.Search in Google Scholar PubMed PubMed Central

22. Jaćimović, željko; Kosović, M.; Kastratović, V.; Barta Holló, B.; Szécsényi, K. M.; Szilágyi, I. M.; Latinović, N.; Vojinović-Ješić, L.; Rodić, M. Synthesis and Characterization of Copper, Nickel, Cobalt, Zinc Complexes with 4-nitro-3-pyrazolecarboxylic Acid Ligand. J. Therm. Anal. Calorim. 2018, 133, 813; https://doi.org/10.1007/s10973–018–7229–4.10.1007/s10973-018-7229-4Search in Google Scholar

Received: 2025-02-25
Accepted: 2025-04-17
Published Online: 2025-04-30
Published in Print: 2025-08-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Hydrothermal synthesis, crystal structure of [K3:N1:N2:N4-3-(pyridin-2-yl)-1,2,4-triazole] binuclear Ni(II) complex[Ni2(C7H5N4)2(C7H4ClO2)2]
  4. The crystal structure of di(thiocyanato-κ1N)-bis(methanol)-di(1,3-bis((pyridin-4-ylthio)methyl)benzene)-iron(II), C40H40FeN6O2S6
  5. Crystal structure of poly[(μ 3-3,3″,5,5″-tetrafluoro-(1,1′:4′,1″-terphenyl)-4,4″-dicarboxylate-κ 3 O,O:O″)-(μ 4-3,3″,5,5″-tetrafluoro-(1,1′:4′,1″-terphenyl)-4,4″-dicarboxylate-κ 4 O,O,O,O‴)-dicadmium(II)]dimethylformamide solvate, C47H30Cd2F8N3O12
  6. The crystal structure of a 3d-4f complex based on 2-(benzo[d]thiazol-2-yl)-6-methoxyphenol C31H27N4O13S2CoEr
  7. Crystal structure of poly[(μ 2-1,4-bis(imidazol-1-yl)benzene-k 2 N:N′)(μ 4-biphenyl-3,3′,5,5′-tetracarboxylic-k 4 O,O,O,O)dizinc(II)] dihydrate, C40H28Zn2N8O9
  8. The crystal structure of 4-(bis(2-chloroethyl)amino)-2-hydroxybenzaldehyde, C11H13Cl2NO2
  9. Synthesis and crystal structure of-(10S,13S,16R,Z) −17-ethylidene-16-hydroxy-10,13-dimethylhexadecahydro-3 H-cyclopenta[α]phenanthren-3-one, C21H32O2
  10. The crystal structure of catena-((μ 2-4,4′-bipyridine-κ 2 N:N′)-bis(4-fluorobenzoato-κ1O)-copper(II)), C24H16F2N2O4Cu
  11. Crystal structure of catena-poly[(ethylenediamine-κ2 N,N′)-μ-tetraoxomolybdato(VI) zinc(II)], C2H8MoN2O4Zn
  12. The crystal structure of 4-chloro-1H-pyrazole-3-carboxylic acid, C4H3ClN2O2
  13. The crystal structure of bepotastine besilate, C27H31ClN2O6S
  14. The crystal structure of (η 6-p-cymene)benzyldiphenylphosphine-diiodido-ruthenium(II) dichloromethane solvate
  15. The crystal structure of poly[(μ 2-1-(1-imidazolyl)-4- (imidazol-1′-yl-methyl)benzene κ 2 N:N′)-(μ 2-3-nitrobenzene -1,2-dicarboxylato-k4,O,O′:O′′,O′′′]zinc(II)-κ 2, C21H15N5O6Zn
  16. The crystal structure of (2R,4S)-5-([1,1′-biphenyl]-4-yl)-4-((tert-butoxycarbonyl)amino)-2-methyl pentanoic acid, C23H29NO4
  17. The crystal strucure of [2,2′-{1,2-phenylenebis [(azanylylidene)methanylylidene]}bis(4-fluorophenolato)-κ4 N,N′,O,O′] nickel(II) N, N-dimethylformamide solvate, C23H19F2N3NiO3
  18. The structure of (E)-6-(cyclopropylmethyl)-11-(2,2-difluoropropylidene)-2-methyl-6, 11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C21H21F2NO2S
  19. Crystal structure of catena-poly[(μ 2-(2-(1H-imidazol-1-ylmethyl)benzyl)-1H-imidazole κ2N:N′)- (μ 2-cyclohexane-1,2-dicarboxylato κ2O,O′)cobalt(II) monohydrate]
  20. The crystal structure of 3,5,7-trinitro-1,3,5,7-oxatriazocane
  21. Crystal structure of poly[(μ2-nitrato-κ3 O,O′:O′′)(μ2-1-[(2-propyl-1H-benzimidazole-1-yl)methyl]-1H-benzotriazole-k2 N:N′)silver(I)], C17H17AgN6O3
  22. The crystal structure of (5-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-sulfanylidene-1,3,4-oxadiazol-3(2H)-yl)(3-methylphenyl)methanone, C18H14N2O4S
  23. The crystal structure of diaqua-bis[5-(4-methylphenyl)-1H-pyrazole-3-carboxylato-κ2N,O]-cobalt(II), C11H11Co0.5N2O3
  24. Crystal structure of 2-(6-methoxynaphthalen-2-yl)-N-(4-morpholinophenyl)propanamide, C24H26N2O3
  25. The crystal structure of sodium methylsulfonate
  26. Crystal structure of catena-poly[bis(isothiocyanate κ 1 N)-(μ 2-3,3ʹ-methylenebis(1-methyl-1,3-dihydro-2H-imidazole-2-thione)-κ 2 S:S′)-cobalt(II)], C11H12CoN6S4
  27. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1N)nickel(II)} (μ 2-oxo)-hexaoxido-di-molybdenum(VI)─1-methyl-1H-imidazole (1/2), C32H48NiMo2N16O7
  28. 6-(Diphenylphosphoryl)-3,3′,6′-tris(10H-phenoxazin-10-yl)-[1,1′-biphenyl]-2,2′-dicarbonitrile, C62H38N5O4P
  29. The crystal structure of R-2′-amino-N-methyl-N-(1-phenylethyl)-[1,1′-biphenyl]-4-carboxamide, C22H22N2O
  30. The crystal structure of bis{tetrakis(n-butyl)(μ-hydroxy)(2,3,5,6-tetrafluorobenzoate) (μ 3 -oxo)ditin(IV)}
  31. Crystal structure of catena-poly[aqua-(μ 2(3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylato-κ 2 O:O′)-(3,6-bis(4′-pyridyl)-1,2,4,5-tetrazine-κ 1 N)zinc(II)], C22H16N6O5S2Zn
  32. The crystal structure of 3-bromo-5-cyano–N-(5-(cyanomethyl)quinolin-8-yl)pentanamide, C19H15BrN4O
  33. The crystal structure of bis(tetramethylammonium) (di-μ2-aqua)hexaaqua-dibarium(II)) decavanadate
  34. The crystal structure of catena-poly(bis(μ 2-chlorido)- (μ 2-4′-(pyridin-4-yl)-2,2′:6′,2″-terpyridine–N′, N″, N‴:N″″) -chlorido-dicopper(I,II)) monohydrate, C20H16N4OCl3Cu2
  35. Crystal structure of spiropachysine, C31H46N2O
  36. Crystal structure of poly[aqua-(μ 2-3-bromoisonicotinato-κ 2 N: O)-(μ 2-3-bromoisonicotinato-κ 3 N: O: O′)-(μ 3-3-bromoisonicotinato-κ 3 N: O: O′)-(μ 2-nitrite-κ 3 O: O′: O″)dicadmium(II) monohydrate], C19H12Br3Cd2N3O9
  37. The crystal structure of 2-acetylpyridine-ortho-fluoro-phenylhydrazone, C14H12FN3O
  38. The crystal structure of poly(triaqua-(m 2-2,2′-bipyridine-4,4′-dicarboxylato-K 2 O:O′)-bis(m 2-2-2′-bipyridine-4,4′-dicarboxylato-K 4 O,O′:O″:O‴)dierbium(III)) hydrate, C36H26Er2N6O16
  39. The crystal structure of 1,1′-(phenazine-5,10-diyl)bis(heptan-1-one), C26H34N2O2
  40. The crystal structure of (4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)boronic acid, C21H16BN3O2
  41. Crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyrazine-5,7(6H)-dione, C6H3N3O3
  42. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide ethanol solvate, C23H30N2O4
  43. Crystal structure of pyridinium tetrakis[1,1,1-trifluoro-2,4-pentadionato-K2 O,O′]lutetium(III) C20F12H16LuO8C5H6N
  44. Crystal structure of dichlorido–tetrakis{3-((1H-1,2,4-triazol-1-yl)methyl)-1-(4-chlorophenyl)-4,4-dimethylpentan-3-ol-k 1N}cobalt(II), C64H88O4N12Cl6Co
  45. The crystal structure of tetrakis(4-allyl-2-methoxyphenyl nicotinato-k 1 N)bis(thiocyanato-k 1 N)cobalt(II)
  46. The crystal structure of methyl 4-(3,4-dichlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H21Cl2NO3
  47. The crystal structure of (E)–N-(4-chlorobenzylidene)(4-chlorophenyl)methanamine, C14H11Cl2N
  48. Crystal structure of (E)-4-(4-ethylbenzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H22O4
  49. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid dimethyl sulfoxide monosolvate, C4H2N3O4⋅C2H6OS
  50. Crystal structure of-(1S,4aR,5S)-5,6,7-trihydroxy-8-isopropyl-1-methyl-1,2,3,4,5,10,11,11a-octahydro-4a,1-(epoxymethano)dibenzo[a,d][7]annulen-13-one C20H26O5
  51. Crystal structure of 7,9-dimethoxy-2-methyl-4-propylbenzo[f]isoquinolin-5-yl 4-bromobenzoate, C26H24BrNO4
  52. Crystal structure of bis(N,N,N-trimethylbutanaminium)tridecathiotrimolybdate(2−), (BuMe3N)2[Mo3S13]
  53. Crystal structure of N-(adamantan-1-yl)-4-methylpiperazine-1-carbothioamide, C16H27N3S
  54. Crystal structure of poly[(μ 2-2,2′-[1,4-phenylenebis(methylenesulfanediyl)]dibenzoato-κ 4 O,O′:O″,O‴)-(μ 2-1,1′-([1,1′-biphenyl]-4,4′-diyl)bis(1H-benzimidazole)-κ 2 N:N′)cadmium(II)]dimethylformamide solvate, C51H41N5O5S2Cd
  55. The crystal structure of 2-benzoyl-3′,4′,5′,6′-tetrahydrospiro[isoindoline-1,2′-pyran]-3-one, C19H17NO3
  56. The crystal structure of 1-(4-cyanobenzyl)-4-phenyl-1,4-dihydropyridine-3-carbonitrile, C20H15N3
  57. Crystal structure of (1,3-dioxolan-2-ylmethyl)triphenylphosphonium bromide, C22H22BrO2P
  58. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] tetrachloridomanganese(II)
  59. The crystal structure of 2-(2-hydroxy-4-n-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, C33H39N3O2
  60. Crystal structure of catena-poly[aqua-(5-carboxypyridine-2-carboxylate-κ 2N,O)(2,5-pyridine-dicarboxylate-κ 4O,O′:N:O″)bismuth(III)], C14H9BiN2O9
  61. Crystal structure of (E)-1-fluoro-4-(2-(phenylsulfonyl)vinyl)benzene, C14H11FO2S
  62. Crystal structure of methyl 2-amino-3-chloro-4-methoxybenzoate, C9H10ClNO3
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0093/html
Scroll to top button