Startseite Optimization and machinability evaluation for WEDM of austempered ductile iron
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimization and machinability evaluation for WEDM of austempered ductile iron

  • Sharun Victor

    Sharun Victor is an Assistant Professor of Mechanical Engineering at Panimalar Institute of Technology. His research interests include machining, WEDM, AWJM, manufacturing, and optimization.

    und Anand Ronald Bennet

    Anand Ronald Bennet is an Associate Professor of Mechanical Engineering at Sri Sivasubramaniya Nadar College of Engineering. His research interests include machining, Additive Manufacturing, Metal Matrix Composites, and Slurry Erosion studies.

    EMAIL logo
Veröffentlicht/Copyright: 31. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Wire electrical discharge machining (Wire EDM) is a non-contact CNC machining that removes material from a workpiece with electrical sparks. Optimization of parameters involved in wire EDM is essential for better operational economics and energy usage. The major goal and objective of this research are to assess the machining parameters, like surface roughness Ra, material removal rate MRR, and hardness HV by experimental investigation utilizing the wire cut EDM machine and austempered ductile iron (ADI) as the work material. An artificial neural network (ANN) has been employed to create a prediction model using experimental data. The Aquila optimization approach is then used to obtain the ideal operating parameters. With Aquila optimization, the predicted optimum values for MRR, Ra, and Hardness are 3.529 mm3/min, 1.966 µm, and 367 HV, respectively, when the input parameters are pulse ton 16 µs, pulse-toff time toff 14 µs, servo voltage 50 V, and current 3 A. Finally, SEM and 3D roughness analysis have been carried out to study surface morphology and material removal mechanism.


Corresponding author: Anand Ronald Bennet, Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, OMR, Kalavakkam, Chennai, 603110, Tamilnadu, India, E-mail:

About the authors

Sharun Victor

Sharun Victor is an Assistant Professor of Mechanical Engineering at Panimalar Institute of Technology. His research interests include machining, WEDM, AWJM, manufacturing, and optimization.

Anand Ronald Bennet

Anand Ronald Bennet is an Associate Professor of Mechanical Engineering at Sri Sivasubramaniya Nadar College of Engineering. His research interests include machining, Additive Manufacturing, Metal Matrix Composites, and Slurry Erosion studies.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] S. Kuriakose, K. Mohan, and M. S. Shunmugam, “Data mining applied to wire-EDM process,” J. Mater. Process. Technol., vol. 142, no. 1, pp. 182–189, 2003, https://doi.org/10.1016/S0924-0136(03)00596-X.Suche in Google Scholar

[2] G. Selvakumar, V. Balasubramanian, S. Vijayan, and N. Lenin, “Effects of multi-pass cutting during wire electrical discharge,” Mater. Test., vol. 61, no. 9, pp. 901–906, 2019, https://doi.org/10.3139/120.111400.Suche in Google Scholar

[3] B. C. Khatri and P. P. Rathod, “Investigations on the performance of concentric flow dry wire electric discharge machining (WEDM) for thin sheets of titanium alloy,” J. Adv. Manuf. Technol., vol. 92, pp. 1945–1954, 2017, https://doi.org/10.1007/s00170-017-0284-3.Suche in Google Scholar

[4] M. C. Cakir, A. Bayram, K. K. Kircali, and C. I. H. A. T. Ensarioglu, “Effects of microstructure on machinability of ductile iron,” Proc. IMechE, Part B: J. Eng. Manuf., vol. 225, no. 2, pp. 297–304, 2011, https://doi.org/10.1177/2041297510394101.Suche in Google Scholar

[5] M. Hanief and M. S. Charoo, “Modeling and optimization of flank wear and surface roughness of Monel-400 during hot turning using artificial intelligence techniques,” Metall. Mater. Eng., vol. 26, no. 1, pp. 57–69, 2020, https://doi.org/10.30544/473.Suche in Google Scholar

[6] S. A. El-Bahloul, “Optimization of wire electrical discharge machining using statistical methods coupled with artificial intelligence techniques and soft computing,” SN Appl. Sci., vol. 2, no. 1, pp. 1–8, 2020, https://doi.org/10.1007/s42452-019-1849-6.Suche in Google Scholar

[7] D. Eraslan, et al.., “Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions,” J.Mater. Res. Technol., vol. 11, pp. 1443–1456, 2021, https://doi.org/10.1016/j.jmrt.2021.01.123.Suche in Google Scholar

[8] A. Kumar, T. Soota, and J. Kumar, “Optimization of wire-cut EDM process parameter by Grey-based response surface methodology,” J. Ind. Eng. Int., vol. 14, no. 4, pp. 821–829, 2018, https://doi.org/10.1007/s40092-018-0264-8.Suche in Google Scholar

[9] T. R. Ablyaz, E. S. Shlykov, K. R. Muratov, and S. S. Sidhu, “Analysis of wire-cut electro discharge machining of polymer composite materials,” Micromachines, vol. 12, no. 5, p. 571, 2021, https://doi.org/10.3390/mi12050571.Suche in Google Scholar PubMed PubMed Central

[10] A. Saha and S. C. Mondal, “Experimental investigation and modelling of WEDM process for machining nano-structured hardfacing material,” J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 9, pp. 3439–3455, 2017, https://doi.org/10.1007/s40430-016-0608-5.Suche in Google Scholar

[11] A. Kumar, et al.., “Multi-objective optimization of WEDM of aluminum hybrid composites using AHP and genetic algorithm,” Arab. J. Sci. Eng., vol. 47, no. 7, pp. 8031–8043, 2022, https://doi.org/10.1007/s13369-021-05865-4.Suche in Google Scholar

[12] S. K. Shihab, “Optimization of WEDM process parameters for machining of friction-stir-welded 5754 aluminum alloy using Box–Behnken design of RSM,” Arab. J. Sci. Eng., vol. 43, no. 9, pp. 5017–5027, 2018, https://doi.org/10.1007/s13369-018-3238-7.Suche in Google Scholar

[13] M. R. Phate, S. B. Toney, and V. R. Phate, “Multi-parametric optimization of WEDM using artificial neural network (ANN)-based PCA for Al/SiCp MMC,” J. Inst. Eng. (India): C., vol. 102, no. 1, pp. 169–181, 2021, https://doi.org/10.1007/s40032-020-00615-1.Suche in Google Scholar

[14] H. Zhou, et al.., “Microstructure and mechanical behaviors of grinding balls produced by dual matrix structure two-step austempering process,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 4672–4681, 2020, https://doi.org/10.1016/j.jmrt.2020.02.095.Suche in Google Scholar

[15] M. Erdogan, K. Davut, and V. Kilicli, “Development and properties of austempered low alloyed white cast iron,” Mater. Test., vol. 63, no. 11, pp. 977–983, 2021, https://doi.org/10.1515/mt-2021-0032.Suche in Google Scholar

[16] A. Kosarac, C. Mladjenovic, M. Zeljkovic, S. Tabakovic, and M. Knezev, “Neural-network-based approaches for optimization of machining parameters using small dataset,” Materials, vol. 15, no. 3, p. 700, 2022, https://doi.org/10.3390/ma15030700.Suche in Google Scholar PubMed PubMed Central

[17] A. Sagbas, F. Gürtuna, and U. Polat, “Comparison of ANN and RSM modeling approaches for WEDM process optimization,” Mater. Test., vol. 63, no. 4, pp. 386–392, 2021, https://doi.org/10.1515/mt-2020-0057.Suche in Google Scholar

[18] T. Gurgenc and O. Altay, “Surface roughness prediction of wire electric discharge machining (WEDM)-machined AZ91D magnesium alloy using multilayer perceptron, ensemble neural network, and evolving product-unit neural network,” Mater. Test., vol. 64, no. 3, pp. 350–362, 2022, https://doi.org/10.1515/mt-2021-2034.Suche in Google Scholar

[19] R. Jangid and D. Agrawal, “Development of ANN model for analysis of response parameters of wire cut EDM for EN-47 spring steel,” Development, vol. 8, no. 8, pp. 68–77, 2018.Suche in Google Scholar

[20] P. G. Benardos and G. C. Vosniakos, “Optimizing feedforward artificial neural network architecture,” Eng. Appl. Artif. Intell., vol. 20, no. 3, pp. 365–382, 2007, https://doi.org/10.1016/j.engappai.2006.06.005.Suche in Google Scholar

[21] X. Huang, H. Cao, and B. Jia, “Optimization of Levenberg Marquardt algorithm applied to nonlinear systems,” Processes, vol. 11, no. 6, p. 1794, 2023, https://doi.org/10.3390/pr11061794.Suche in Google Scholar

[22] T. A. Akşen, B. Şener, E. Esener, and M. Firat, “Evaluation of ductile fracture criteria in combination with a homogenous polynomial yield function for edge splitting damage of DP steels,” Mater. Test., vol. 65, no. 6, pp. 824–843, 2023, https://doi.org/10.1515/mt-2022-0359.Suche in Google Scholar

[23] N. Ozsoy, “Prediction and optimization of thrust force during the drilling of AISI 2080 steel,” Mater. Test., vol. 64, no. 4, pp. 602–609, 2022, https://doi.org/10.1515/mt-2021-2098.Suche in Google Scholar

[24] L. Abualigah, D. YouRai, M. Abd Elaziz, A. A. Ewees, M. A. Al-Qaness, and A. H. Gandomi, “Aquila optimizer: a novel meta-heuristic optimization algorithm,” Comput. Ind. Eng., vol. 157, no. 11, 2021, Art. no. 107250, https://doi.org/10.1016/j.cie.2021.107250.Suche in Google Scholar

[25] M. A. Singh, K. Joshi, O. Hanzel, R. Singh, P. Sajgalik, and D. Marla, “Influence of open voltage and servo voltage during Wire-EDM of silicon carbides,” Procedia CIRP, vol. 95, pp. 285–289, 2020, https://doi.org/10.1016/j.procir.2020.02.305.Suche in Google Scholar

[26] B. Xu, et al.., “Recast layer removal of 304 stainless steel by combining micro-EDM with negative polarity micro-EDM,” J. Adv. Manuf. Technol., vol. 107, no. 11–12, pp. 4713–4723, 2020, https://doi.org/10.1007/s00170-020-05312-y.Suche in Google Scholar

[27] R. Nur, M. Muas, and S. Risal, “Effect of current and wire speed on surface roughness in the manufacturing of straight gear using wire-cut EDM process,” IOP Conf. Ser. Mater. Sci. Eng., vol. 619, no. 1, 2019, Art. no. 012002, https://doi.org/10.1088/1757-899X/619/1/012002.Suche in Google Scholar

[28] J. Kapoor, S. Singh, and J. S. Khamba, “High-performance wire electrodes for wire electrical-discharge machining–a review,” Proc. IMechE, Part B: J. Eng. Manuf., vol. 226, no. 11, pp. 1757–1773, 2012, https://doi.org/10.1177/0954405412460354.Suche in Google Scholar

[29] S. Bozzi, G. Passoni, P. Bernardara, N. Goutal, and A. Arnaud, “Roughness and discharge uncertainty in 1D water level calculations,” Environ. Model Assess., vol. 20, no. 4, pp. 343–353, 2015, https://doi.org/10.1007/s10666-014-9430-6.Suche in Google Scholar

Published Online: 2024-10-31
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Bending moment calibration for rotational bending fatigue testing machine based on strain measurement
  3. Structural monitoring of elevator guide rail bracket under normal running condition
  4. TiB-based coating formation on Ti6Al4V alloy
  5. Mechanical behavior of shape memory alloys considering the effects of body fluids corrosion for biomedical applications
  6. Impact of lattice designs and production parameters on mechanical properties of AlSi10Mg in laser powder bed fusion
  7. Effect of bio-waste conch filler addition on mechanical performance of glass fiber-reinforced epoxy polymer composite
  8. Effect of austempering temperatures on mechanical properties of dual matrix structure austempered ductile iron
  9. Influence of SiC content on the properties of Al/SiC composites produced by powder metallurgical route
  10. Effect of boron content and quenching temperature on the microstructure and wear resistance of high boron steel
  11. Influence of heat treatment on metallurgical and mechanical properties of aluminium Al6061 hybrid metal matrix composites
  12. Influence of stitching on the interlaminar fracture toughness energy – modes I and II – of unidirectional GFRP
  13. Hardfacing of GX40CrNiSi25-20 cast stainless steel with an austenitic manganese steel electrode
  14. Optimization and machinability evaluation for WEDM of austempered ductile iron
  15. Diffusion kinetics of borided of low entropy soft magnetic FeCo alloy
  16. Wear properties of Al6061/SiC + B4C + TiC hybrid composites produced by vacuum infiltration method
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2024-0266/html
Button zum nach oben scrollen