Startseite Technik Dry tribological behaviour of microwave-assisted sintered AA2024 matrix hybrid composites reinforced by TiC/B4C/nano-graphite particles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dry tribological behaviour of microwave-assisted sintered AA2024 matrix hybrid composites reinforced by TiC/B4C/nano-graphite particles

  • Emre Özer

    Asst. Prof. Dr. Emre Özer, born in 1985, acquired his BSc at Çukurova University in 2009 and his MSc and PhD at Osmaniye Korkut Ata University in Mechanical Engineering in 2015 and 2020. His studies include ballistic, metal matrix composites and nanocomposites, heat treatment, microwave sintering, mechanical characterization, welding and continuous casting.

    ORCID logo EMAIL logo
    und Mehmet Ayvaz

    Assoc. Prof. Dr. Mehmet Ayvaz, born 1985, acquired his BSc in Mechanical Engineering in 2008, his MSc in Mechanical Engineering in 2010 and his PhD in Mechanical Engineering in 2016. His studies include powder metallurgy, welding technologies, ballistic science and micro-nano hybrid composite materials.

    ORCID logo
Veröffentlicht/Copyright: 27. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study aimed to produce hybrid composites with a AA2024 matrix reinforced by TiC/B4C/nano-graphite through a microwave-assisted sintering technique at 560 °C for 60 min. The nano-graphite ratio in the produced composite samples was kept constant as 1 wt.%. TiC and B4C were used in equal ratios at 2, 6 and 10 % by weight total to determine their effects on tribological properties. Wear tests were conducted under three different loads: 3, 5 and 10 N. In the hybrid composites produced, an inverse correlation was observed between the increase in reinforcement ratio and sinterability, while a direct correlation relationship was found in hardness and wear resistance. Compared to the sample containing 2 % TiC/B4C in total by weight, a ∼50 % increase in Brinell hardness and a 52–68 % decrease in wear rate was obtained in the sample containing 10 % TiC/B4C. As the reinforcement ratio increased, tribofilm formation increased, and abrasive wear was replaced by mild-oxidative wear type.


Corresponding author: Emre Özer, Industrial Engineering Department, Engineering Faculty, Osmaniye Korkut Ata University, Karacaoglan Campus, 80000 Osmaniye, Türkiye, E-mail:

Award Identifier / Grant number: BAP Project No: 2021-020

About the authors

Emre Özer

Asst. Prof. Dr. Emre Özer, born in 1985, acquired his BSc at Çukurova University in 2009 and his MSc and PhD at Osmaniye Korkut Ata University in Mechanical Engineering in 2015 and 2020. His studies include ballistic, metal matrix composites and nanocomposites, heat treatment, microwave sintering, mechanical characterization, welding and continuous casting.

Mehmet Ayvaz

Assoc. Prof. Dr. Mehmet Ayvaz, born 1985, acquired his BSc in Mechanical Engineering in 2008, his MSc in Mechanical Engineering in 2010 and his PhD in Mechanical Engineering in 2016. His studies include powder metallurgy, welding technologies, ballistic science and micro-nano hybrid composite materials.

  1. Research ethics: The paper reflects the authors’ own research and analysis in a truthful and complete manner.

  2. Author contributions: All authors participated in the experiments, collaborated on writing the manuscript, took responsibility for the content, and approved the manuscript for submission.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: This research is financially supported by BAP Project (no: 2021-020) provided by Manisa Celal Bayar University (MCBU), Turkey. The authors express gratitude to BAPMCBU for their support.

  5. Data availability: The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

[1] A. Awasthi, N. Panwar, A. S. Wadhwa, and A. Chauhan, “Mechanical characterization of hybrid aluminum composite – a review,” Mater. Today: Proc., vol. 5, no. 14, pp. 27840–27844, 2018, https://doi.org/10.1016/j.matpr.2018.10.021.Suche in Google Scholar

[2] J. Singh and A. Chauhan, “Characterization of hybrid aluminum matrix composites for advanced applications – a review,” J. Mater. Res. Technol., vol. 5, no. 2, pp. 159–169, 2016, https://doi.org/10.1016/j.jmrt.2015.05.004.Suche in Google Scholar

[3] U. Ç. Çavdar, B. Gül, L. U. Gezici, and M. Ayvaz, “Ultra-high frequency induction and conventional sintering of Al–SiO2 composites: a comparative study,” Mater. Test., vol. 62, no. 10, pp. 1048–1054, 2021, https://doi.org/10.3139/120.111582.Suche in Google Scholar

[4] M. Ayvaz and H. Cetinel, “Mechanical properties of Al–Cu/B4C and Al–Mg/B4C metal matrix composites,” Mater. Test., vol. 63, no. 4, pp. 350–355, 2021, https://doi.org/10.1515/mt-2020-0052.Suche in Google Scholar

[5] A. Canakci and F. Arslan, “Abrasive wear behaviour of B4C particle reinforced Al2024 MMCs,” Int. J. Adv. Manuf. Technol., vol. 63, nos. 5–8, pp. 785–795, 2012, https://doi.org/10.1007/s00170-012-3931-8.Suche in Google Scholar

[6] M. Roy, B. Venkataraman, V. V. Bhanuprasad, Y. R. Mahajan, and G. Sundararajan, “The effect of particulate reinforcement on the sliding wear behavior of aluminum matrix composites,” Metall. Mater. Trans. A, vol. 23, no. 10, pp. 2833–2847, 1992, https://doi.org/10.1007/BF02651761.Suche in Google Scholar

[7] Y. Dou, Y. Liu, Y. Liu, Z. Xiong, and Q. Xia, “Friction and wear behaviors of B4C/6061Al composite,” Mater. Des., vol. 60, pp. 669–677, 2014, https://doi.org/10.1016/j.matdes.2014.04.016.Suche in Google Scholar

[8] A. I. Baradeswaran and A. E. Perumal, “Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites,” Compos. B Eng., vol. 54, pp. 146–152, 2013, https://doi.org/10.1016/j.compositesb.2013.05.012.Suche in Google Scholar

[9] S. J. Sanjay, S. K. Naik, and C. Shashishekar, “Effect of artificial ageing on wear behaviour of Al7010/B4C composite,” Mater. Today: Proc., vol. 4, no. 10, pp. 11194–11200, 2017, https://doi.org/10.1016/j.matpr.2017.09.040.Suche in Google Scholar

[10] R. Akash, S. Amar, G. L. Rajesh, V. Hiremath, and V. Auradi, “High temperature wear properties of artificially aged 6061 Al–B4Cp metal matrix composite,” Mater. Today: Proc., vol. 5, no. 8, pp. 16080–16084, 2018, https://doi.org/10.1016/j.matpr.2018.05.090.Suche in Google Scholar

[11] D. P. Bhujanga and H. R. Manohara, “Processing and evaluation of mechanical properties and dry sliding wear behavior of AA6061-B4C composites,” Mater. Today: Proc., vol. 5, no. 9, pp. 19773–19782, 2018, https://doi.org/10.1016/j.matpr.2018.06.340.Suche in Google Scholar

[12] R. A. Kumar, A. N. Sait, and K. Subramanian, “Mechanical properties and microstructure of stir casted Al/B4C/garnet composites,” Mater. Test., vol. 59, no. 4, pp. 338–343, 2017, https://doi.org/10.3139/120.111007.Suche in Google Scholar

[13] İ. Şahin, A. Bektaş, F. Gül, and H. Çinici, “Modeling of wear behavior of Al/B4C composites produced by powder metallurgy,” Mater. Test., vol. 59, no. 5, pp. 491–496, 2017, https://doi.org/10.3139/120.111028.Suche in Google Scholar

[14] L. U. Gezici, E. Özer, İ. Sarpkaya, and U. Çavdar, “The effect of SiC content on microstructural and tribological properties of sintered B4C and SiC reinforced Al–Cu–Mg–Si matrix hybrid composites,” Mater. Test., vol. 64, no. 4, pp. 502–512, 2022, https://doi.org/10.1515/mt-2021-2103.Suche in Google Scholar

[15] K. Rajkumar, A. Gnanavelbabu, M. S. Venkatesan, and K. Rajagopalan, “Cooperating function of graphite in reducing frictional wear of aluminium boron carbide composite,” Mater. Today: Proc., vol. 5, no. 14, pp. 27801–27809, 2018, https://doi.org/10.1016/j.matpr.2018.10.016.Suche in Google Scholar

[16] A. Sharma, M. Garg, and S. Singh, “Taguchi optimization of tribological properties of Al/Gr/B4C composite,” Ind. Lubric. Tribol., vol. 67, no. 4, pp. 380–388, 2015, https://doi.org/10.1108/ILT-10-2014-0099.Suche in Google Scholar

[17] V. M. Ravindranath, G. S. Shiva Shankar, S. Basavarajappa, and R. Suresh, “Optimization of Al/B4C and Al/B4C/Gr MMC drilling using Taguchi approach,” Mater. Today: Proc., vol. 4, no. 10, pp. 11181–11187, 2017, https://doi.org/10.1016/j.matpr.2017.08.085.Suche in Google Scholar

[18] V. M. Ravindranath, M. Yerriswamy, S. V. Vivek, G. S. Shankar, and N. Siddesh Kumar, “Drilling of Al2219/B4C/Gr metal matrix hybrid composites,” Mater. Today: Proc., vol. 4, no. 9, pp. 9898–9901, 2017, https://doi.org/10.1016/j.matpr.2017.06.290.Suche in Google Scholar

[19] A. Baradeswaran, S. C. Vettivel, A. Elaya Perumal, N. Selvakumar, and R. Franklin Issac, “Experimental investigation on mechanical behaviour, modeling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites,” Mater. Des., vol. 63, pp. 620–632, 2014, https://doi.org/10.1016/j.matdes.2014.06.054.Suche in Google Scholar

[20] K. A. Varun, K. Rajkumar, and A. Gnanavelbabu, “Wear and life characteristics of Al–B4C nano graphite composite,” Int. J. Adv. Eng., vol. 3, no. 1, pp. 61–65, 2016.Suche in Google Scholar

[21] M. Ayvaz, “Microstructure and dry sliding wear behaviors of microwave-sintered Al–4.4Cu–0.7 Mg–0.6Si–B4C/nGr hybrid composites,” Trans. Indian Inst. Met., vol. 74, no. 6, pp. 1397–1408, 2021, https://doi.org/10.1007/s12666-021-02232-7.Suche in Google Scholar

[22] H. Jafarian, J. Habibi-Livar, and S. H. Razavi, “Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding,” Compos. B Eng., vol. 77, pp. 84–92, 2015, https://doi.org/10.1016/j.compositesb.2015.03.009.Suche in Google Scholar

[23] A. Albiter, A. Contreras, E. Bedolla, and R. Perez, “Structural and chemical characterization of precipitates in Al-2024/TiC composites,” Compos. A Appl. Sci. Manuf., vol. 34, no. 1, pp. 17–24, 2003, https://doi.org/10.1016/S1359-835X(02)00259-2.Suche in Google Scholar

[24] A. Albiter, C. A. Leon, R. A. L. Drew, and E. Bedolla, “Microstructure and heat-treatment response of Al-2024/TiC composites,” Mater. Sci. Eng. A, vol. 289, nos. 1–2, pp. 109–115, 2000, https://doi.org/10.1016/S0921-5093(00)00900-X.Suche in Google Scholar

[25] E. M. Sherif, H. S. Abdo, K. A. Khalil, and A. M. Nabawy, “Effect of titanium carbide content on the corrosion behavior of Al–TiC composites processed by high energy ball mill,” Int. J. Electrochem. Sci., vol. 11, no. 6, pp. 4632–4644, 2016, https://doi.org/10.20964/2016.06.18.Suche in Google Scholar

[26] H. Fallahdoost, A. Nouri, and A. Azimi, “Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites,” J. Phys. Chem. Solids, vol. 93, pp. 137–144, 2016, https://doi.org/10.1016/j.jpcs.2016.02.020.Suche in Google Scholar

[27] S. Jeyapraksamar, R. Venkatachalam, and C. Velmurugan, “Experimental investigations on the influence of TiC/graphite reinforcement in wear behavior of Al 6061 hybrid composites,” Surf. Rev. Lett., vol. 26, no. 04, 2019, Art. no. 1850173, https://doi.org/10.1142/S0218625X18501731.Suche in Google Scholar

[28] K. R. Ramkumar, S. Sivasankara, F. A. Al-Mufadi, S. Siddharth, and R. Raghu, “Investigations on of AA 7075–x wt% TiC composites for aerospace applications,” Arch. Civ. Mech. Eng., vol. 19, no. 2, pp. 428–438, 2019, https://doi.org/10.1016/j.acme.2018.12.003.Suche in Google Scholar

[29] J. Mohapatra, S. Nayak, and M. M. Mahapatra, “Mechanical and tribology properties of Al-4.5 %Cu-5 %TiC metal matrix composites for light-weight structures,” Int. J. Lightweight Mater. Manufact., vol. 3, no. 2, pp. 120–126, 2020, https://doi.org/10.1016/j.ijlmm.2019.09.004.Suche in Google Scholar

[30] T. P. Gowrishankar, L. H. Manjunatha, and B. Sangmesh, “Mechanical and wear behaviour of Al6061 reinforced with and TiC MMC’s,” Mater. Res. Innovat., vol. 24, no. 3, pp. 179–185, 2020, https://doi.org/10.1080/14328917.2019.1628497.Suche in Google Scholar

[31] E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, and T. Ebadzadeh, “Evaluation of microstructure and mechanical properties of Al–TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods,” Materials, vol. 10, no. 11, 2017, Art. no. 1255. https://doi.org/10.3390%2Fma10111255.10.3390/ma10111255Suche in Google Scholar PubMed PubMed Central

[32] M. Ayvaz, “Characterization and tribological properties of novel AlCu4.5SiMg alloy–(B4C/TiO2/nGr) quaternary hybrid composites sintered via microwave,” Met. Mater. Int., vol. 28, no. 3, pp. 710–721, 2022, https://doi.org/10.1007/s12540-020-00894-4.Suche in Google Scholar

[33] K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, J. Celis, and L. Froyen, “Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study,” J. Mater. Process. Technol., vol. 142, no. 3, pp. 738–743, 2003, https://doi.org/10.1016/S0924-0136(03)00815-X.Suche in Google Scholar

[34] P. R. Matli, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Microwave rapid sintering of Al-metal matrix composites: a review on the effect of reinforcements, microstructure and mechanical properties,” Metals, vol. 6, no. 7, 2016, Art. no. 143, https://doi.org/10.3390/met6070143.Suche in Google Scholar

[35] E. Ghasali, A. H. Pakseresht, M. Alizadeh, K. Shirvanimoghaddam, and T. Ebadzadeh, “Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering,” J. Alloys Compd., vol. 688, pp. 527–533, 2016, https://doi.org/10.1016/j.jallcom.2016.07.063.Suche in Google Scholar

[36] C. Padmavathi, A. Upadhyaya, and D. Agrawal, “Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy,” Mater. Chem. Phys., vol. 130, nos. 1–2, pp. 449–457, 2011, https://doi.org/10.1016/j.matchemphys.2011.07.008.Suche in Google Scholar

[37] C. Sekaran, T. Basak, and R. Srinivasan, “Microwave heating characteristics of graphite based powder mixtures,” Int. Commun. Heat Mass Tran., vol. 48, pp. 22–27, 2013, https://doi.org/10.1016/j.icheatmasstransfer.2013.09.008.Suche in Google Scholar

[38] U. O. Mendez, O. V. Kharissova, and M. Rodriguez, “Synthesis and morphology of nanostructures via microwave heating,” Rev. Adv. Mater. Sci., vol. 5, no. 4, pp. 398–402, 2003.Suche in Google Scholar

[39] H. R. Hafizpour, A. Simchi, and S. Parvizi, “Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations,” Adv. Powder Technol., vol. 21, no. 3, pp. 273–278, 2010, https://doi.org/10.1016/j.apt.2009.12.003.Suche in Google Scholar

[40] N. V. Ponraj, A. Azhagurajan, and S. C. Vettivel, “Microstructure, consolidation and mechanical behaviour of Mg/n–TiC composite,” Alex. Eng. J., vol. 55, no. 3, pp. 2077–2086, 2016, https://doi.org/10.1016/j.aej.2016.06.033.Suche in Google Scholar

[41] D. Zalaoğlu and M. Übeyli, “Influence of aging and annealing processes on the properties of TiB2 particulate reinforced aluminum composites produced by powder metallurgy,” Kovove Mater., vol. 59, no. 1, pp. 21–38, 2021, https://doi.org/10.4149/km_2021_1_21.Suche in Google Scholar

[42] S. Pournaderi and F. Akhlaghi, “Wear behaviour of Al6061–Al2O3 composites produced by in-situ powder metallurgy (IPM),” Powder Technol., vol. 313, pp. 184–190, 2017, https://doi.org/10.1016/j.powtec.2017.03.019.Suche in Google Scholar

[43] D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and R. Kambali, “An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying,” Mater. Des., vol. 57, pp. 394–404, 2014, https://doi.org/10.1016/j.matdes.2013.12.067.Suche in Google Scholar

[44] T. Varol, A. Canakci, and S. Ozsahin, “Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024–B4C composites produced by powder metallurgy,” Compos. B Eng., vol. 54, pp. 224–233, 2013, https://doi.org/10.1016/j.compositesb.2013.05.015.Suche in Google Scholar

[45] H. Alihosseini, K. Dehghani, and J. Kamali, “Microstructure characterization, mechanical properties, compressibility and sintering behavior of Al–B4C nanocomposite powders,” Adv. Powder Technol., vol. 28, no. 9, pp. 2126–2134, 2017, https://doi.org/10.1016/j.apt.2017.05.019.Suche in Google Scholar

[46] S. Chand, P. Chandrasekhar, S. Roy, and S. Singh, “Influence of dispersoid content on compressibility, sinterability and mechanical behaviour of B4C/BN reinforced Al6061 metal matrix hybrid composites fabricated via mechanical alloying,” Met. Mater. Int., vol. 27, no. 11, pp. 4841–4853, 2021, https://doi.org/10.1007/s12540-020-00739-0.Suche in Google Scholar

[47] M. Zamani, S. Toschi, A. Morri, L. Ceschini, and S. Seifeddine, “Optimisation of heat treatment of Al–Cu–(Mg–Ag) cast alloys,” J. Therm. Anal. Calorim., vol. 139, no. 6, pp. 3427–3440, 2020, https://doi.org/10.1007/s10973-019-08702-x.Suche in Google Scholar

[48] G. B. Schaffer, T. B. Sercombe, and R. N. Lumley, “Liquid phase sintering of aluminium alloys,” Mater. Chem. Phys., vol. 67, nos. 1–3, pp. 85–91, 2001, https://doi.org/10.1016/S0254-0584(00)00424-7.Suche in Google Scholar

[49] C. F. Deng, D. Z. Wang, X. X. Zhang, and A. Li, “Processing and properties of carbon nanotubes reinforced aluminum composites,” Mater. Sci. Eng. A, vol. 444, nos. 1–2, pp. 138–145, 2007, https://doi.org/10.1016/j.msea.2006.08.057.Suche in Google Scholar

[50] X. Liu, C. Li, J. Eckert, et al.., “Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites,” Mater. Charact., vol. 133, pp. 122–132, 2017, https://doi.org/10.1016/j.matchar.2017.09.036.Suche in Google Scholar

[51] A. M. K. Esawi, K. Morsi, A. Sayed, A. A. Gawad, and P. Borah, “Fabrication and properties of dispersed carbon nanotube–aluminum composites,” Mater. Sci. Eng. A, vol. 508, nos. 1–2, pp. 167–173, 2009, https://doi.org/10.1016/j.msea.2009.01.002.Suche in Google Scholar

[52] C. R. Bradbury, J.-K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, “Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites,” J. Alloys Compd., vol. 585, pp. 362–367, 2014, https://doi.org/10.1016/j.jallcom.2013.09.142.Suche in Google Scholar

[53] F. Mokdad, D. L. Chen, Z. Y. Liu, B. Xiao, D. Ni, and Z. Ma, “Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite,” Carbon, vol. 104, pp. 64–77, 2016, https://doi.org/10.1016/j.carbon.2016.03.038.Suche in Google Scholar

[54] E. Özer, M. Ayvaz, M. Übeyli, and İ. Sarpkaya, “Properties of aluminum nano composites bearing alumina particles and multiwall carbon nanotubes manufactured by mechanical alloying and microwave sintering,” Met. Mater. Int., vol. 29, no. 2, pp. 402–419, 2023, https://doi.org/10.1007/s12540-022-01238-0.Suche in Google Scholar

[55] T. Etter, P. Schulz, M. Weber, et al.., “Aluminium carbide formation in interpenetrating graphite/aluminium composites,” Mater. Sci. Eng. A, vol. 448, nos. 1–2, pp. 1–6, 2007, https://doi.org/10.1016/j.msea.2006.11.088.Suche in Google Scholar

[56] Y. Huang, Q. Ouyang, D. Zhang, J. Zhu, R. Li, and H. Yu, “Carbon materials reinforced aluminum composites: a review,” Acta Metall. Sin. (Engl. Lett.), vol. 27, no. 5, pp. 775–786, 2014, https://doi.org/10.1007/s40195-014-0160-1.Suche in Google Scholar

[57] E. Ghasali, P. Sangpour, A. Jam, H. Rajaei, K. Shirvanimoghaddam, and T. Ebadzadeh, “Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1042–1054, 2018, https://doi.org/10.1016/j.acme.2018.02.006.Suche in Google Scholar

[58] J. C. Viala, J. Bouix, G. Gonzalez, and C. Esnouf, “Chemical reactivity of aluminium with boron carbide,” J. Mater. Sci., vol. 32, no. 17, pp. 4559–4573, 1997. https://doi.org/10.1023/A:1018625402103.10.1023/A:1018625402103Suche in Google Scholar

[59] W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, “Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites,” Acta Mater., vol. 125, pp. 369–376, 2017, https://doi.org/10.1016/j.actamat.2016.12.022.Suche in Google Scholar

[60] H. Wang, F. Tang, G. Li, D. Zhang, M. Liu, and X. Kai, “Microstructure and properties of B4Cp/Al composite prepared by microwave sintering with low temperature,” Mater. Res. Express, vol. 7, no. 9, 2020, Art. no. 096511, https://doi.org/10.1088/2053-1591/ab96ff.Suche in Google Scholar

[61] E. Ghasali, M. Alizadeh, and T. Ebadzadeh, “Mechanical and microstructure comparison between microwave and spark plasma sintering of Al–B4C composite,” J. Alloys Compd., vol. 655, pp. 93–98, 2016, https://doi.org/10.1016/j.jallcom.2015.09.024.Suche in Google Scholar

[62] S. Singh, D. Gupta, V. Jain, and A. K. Sharma, “Microwave processing of materials and applications in manufacturing industries: a review,” Mater. Manuf. Process., vol. 30, no. 1, pp. 1–29, 2015, https://doi.org/10.1080/10426914.2014.952028.Suche in Google Scholar

[63] J. Houšová and K. Hoke, “Microwave heating – the influence of oven and load parameters on the power absorbed in the heated load,” Czech J. Food Sci., vol. 20, no. 3, pp. 117–124, 2002, https://doi.org/10.17221/3521-CJFS.Suche in Google Scholar

[64] K. Rajkumar and S. Aravindan, “Microwave sintering of copper-graphite composite,” J. Mater. Process. Technol., vol. 209, nos. 15–16, pp. 5601–5605, 2009, https://doi.org/10.1016/j.jmatprotec.2009.05.017.Suche in Google Scholar

[65] E. Ghasali, R. Yazdani-Rad, K. Asadian, and T. Ebadzadeh, “Production of Al–SiC–TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods,” J. Alloys Compd., vol. 690, pp. 512–518, 2017, https://doi.org/10.1016/j.jallcom.2016.08.145.Suche in Google Scholar

[66] W. Voigt, “Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper,” Ann. Phys., vol. 274, no. 12, pp. 573–587, 1889, https://doi.org/10.1002/andp.18892741206.Suche in Google Scholar

[67] N. P. Suh, “An overview of the delamination theory of wear,” Wear, vol. 44, no. 1, pp. 1–16, 1977, https://doi.org/10.1016/0043-1648(77)90081-3.Suche in Google Scholar

[68] N. Diomidis and S. Mischler, “Third body effects on friction and wear during fretting of steel contacts,” Tribol. Int., vol. 44, no. 11, pp. 1452–1460, 2011, https://doi.org/10.1016/j.triboint.2011.02.013.Suche in Google Scholar

[69] M. Varenberg, G. Halperin, and I. Etsion, “Different aspects of the role of wear debris in fretting wear,” Wear, vol. 252, nos. 11–12, pp. 902–910, 2002, https://doi.org/10.1016/S0043-1648(02)00044-3.Suche in Google Scholar

[70] M. Godet, “Third-bodies in tribology,” Wear, vol. 136, no. 1, pp. 29–45, 1990, https://doi.org/10.1016/0043-1648(90)90070-Q.Suche in Google Scholar

[71] A. Iwabuchi, K. Hori, and H. Kubosawa, “The effect of oxide particles supplied at the interface before sliding on the severe-mild wear transition,” Wear, vol. 128, no. 2, pp. 123–137, 1988, https://doi.org/10.1016/0043-1648(88)90179-2.Suche in Google Scholar

[72] X. Y. Li and K. N. Tandon, “Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite,” Wear, vol. 245, nos. 1–2, pp. 148–161, 2000, https://doi.org/10.1016/S0043-1648(00)00475-0.Suche in Google Scholar

[73] A. Iwabuchi, H. Kubosawa, and K. Hori, “The dependence of the transition from severe to mild wear on load and surface roughness when the oxide particles are supplied before sliding,” Wear, vol. 139, no. 2, pp. 319–333, 1990, https://doi.org/10.1016/0043-1648(90)90054-E.Suche in Google Scholar

[74] J. Zhang and A. T. Alpas, “Transition between mild and severe wear in aluminium alloys,” Acta Mater., vol. 45, no. 2, pp. 513–528, 1997, https://doi.org/10.1016/S1359-6454(96)00191-7.Suche in Google Scholar

[75] A. R. Riahi and A. T. Alpas, “The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites,” Wear, vol. 251, nos. 1–12, pp. 1396–1407, 2001, https://doi.org/10.1016/S0043-1648(01)00796-7.Suche in Google Scholar

Published Online: 2023-12-27
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. User independent tool for the analysis of data from tensile testing for database systems
  3. Evaluation of corrugated core configuration effects on low-velocity impact response in metallic sandwich panels
  4. Effect of total heat input on coaxiality of rotor shaft in laser cladding
  5. Determination of characteristic properties of Co3O4 loaded LaFe x Al12−x O19 hexaaluminates
  6. Investigation on quasi-static axial crushing of Al/PVC foam-filled Al6063-T5 tubes
  7. Experimental analysis of the effects of different production directions on the mechanical characteristics of ABS, PLA, and PETG materials produced by FDM
  8. Interfacial microstructure and mechanical properties of Si3N4/Invar joints using Ag–Cu–In–Ti with Cu foil as an interlayer
  9. Properties of chemically foamed polypropylene materials for application to automobile interior door panels
  10. Tribological and thermal characteristics of copper-free brake friction composites
  11. Dry tribological behaviour of microwave-assisted sintered AA2024 matrix hybrid composites reinforced by TiC/B4C/nano-graphite particles
  12. Erosion rate of AA6082-T6 aluminum alloy subjected to erosive wear determined by the meta-heuristic (SCA) based ANFIS method
  13. Mechanical properties of elevator ropes and belts exposed to corrosion and elevated temperatures
  14. Variants of friction stir based processes: review on process fundamentals, material attributes and mechanical properties
  15. Performance of conventional and wiper CBN inserts under various cooling conditions in hard turning of AISI 52100 steel
Heruntergeladen am 25.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2023-0248/html?lang=de
Button zum nach oben scrollen