Startseite Mathematik Copies of monomorphic structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Copies of monomorphic structures

  • MiloĆĄ Kurilić EMAIL logo
Veröffentlicht/Copyright: 24. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The poset of copies of a relational structure 𝕏 is the partial order 〈ℙ(𝕏), ⊂〉, where P(X)={Y⊂X:Y≅X}. Investigating the classification of structures related to isomorphism of the Boolean completions đ”č𝕏 = ro(sq(ℙ(𝕏))) we extend the results concerning linear orders to the class of structures definable in linear orders by first-order ÎŁ0-formulas (monomorphic structures). So, BX≅BL holds for some linear order 𝕃, if 𝕏 is definable in a σ-scattered (in particular, countable) or additively indecomposable linear order. For example, BX≅ro(S), where 𝕊 is the Sacks forcing, whenever 𝕏 is a non-constant structure chainable by a real order type containing a perfect set.

Funding statement: This research was supported by the Science Fund of the Republic of Serbia, Program IDEAS, Grant No. 7750027: Set-theoretic, model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity–SMART.

  1. (Communicated by David Buhagiar)

References

[1] Balcar, B.—Pelant, J.—Simon, P.: The space of ultrafilters on ℕ covered by nowhere dense sets, Fund. Math. 110(1) (1980), 11–24.10.4064/fm-110-1-11-24Suche in Google Scholar

[2] Balcar, B.—Simon, P.: Disjoint refinement. In: Handbook of Boolean algebras, Vol. 2 (J. D. Monk, R. Bonnet, eds.), North-Holland, Amsterdam, 1989, pp. 333–388.Suche in Google Scholar

[3] Baumgartner, J. E.: All â„”1-dense sets of reals can be isomorphic, Fund. Math. 79(2) (1973), 101–106.10.4064/fm-79-2-101-106Suche in Google Scholar

[4] Dushnik, B.—Miller, E. W.: Concerning similarity transformations of linearly ordered sets, Bull. Amer. Math. Soc. 46 (1940), 322–326.10.1090/S0002-9904-1940-07213-1Suche in Google Scholar

[5] Fraïssé, R.: Theory of Relations. Stud. Log. Found. Math., Vol. 145 (revised edition, with an appendix by Norbert Sauer), North-Holland, Amsterdam, 2000.Suche in Google Scholar

[6] Frasnay, C.: Quelques problĂ©mes combinatoires concernant les ordres totaux et les relations monomorphes, Ann. Inst. Fourier (Grenoble) 15(2) (1965), 415–524.10.5802/aif.220Suche in Google Scholar

[7] Gibson, P. C.—Pouzet, M.—Woodrow, R. E.: Relational structures having finitely many full-cardinality restrictions, Discrete Math. 291(1–3) (2005), 115–134.10.1016/j.disc.2004.04.024Suche in Google Scholar

[8] Hodges, W.—Lachlan, A. H.—Shelah, S.: Possible orderings of an indiscernible sequence, Bull. London Math. Soc. 9(2) (1977), 212–215.10.1112/blms/9.2.212Suche in Google Scholar

[9] Kechris, A. S.: Classical Descriptive Set Theory. Grad. Texts Math., Vol. 156, Springer-Verlag, 1995.10.1007/978-1-4612-4190-4Suche in Google Scholar

[10] Kojman, M.—Shelah, S.: Fallen cardinals, Dedicated to Petr Vopěnka, Ann. Pure Appl. Logic 109(1–2) (2001), 117–129.10.1016/S0168-0072(01)00045-8Suche in Google Scholar

[11] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Stud. Logic Found. Math., Vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980.Suche in Google Scholar

[12] Kurilić, M. S.: From A1 to D5 towards a forcing-related classification of relational structures, J. Symb. Log. 79(1) (2014), 279–295.10.1017/jsl.2013.26Suche in Google Scholar

[13] Kurilić, M. S.: Posets of copies of countable scattered linear orders, Ann. Pure Appl. Logic 165(3) (2014), 895–912.10.1016/j.apal.2013.11.005Suche in Google Scholar

[14] Kurilić, M. S.: Forcing with copies of countable ordinals, Proc. Amer. Math. Soc. 143(4) (2015), 1771–1784.10.1090/S0002-9939-2014-12360-4Suche in Google Scholar

[15] Kurilić, M. S.: Different similarities, Arch. Math. Logic 54(7–8) (2015), 839–859.10.1007/s00153-015-0443-xSuche in Google Scholar

[16] Kurilić, M. S.: Vaught’s conjecture for monomorphic theories, Ann. Pure Appl. Logic 170(8) (2019), 910–920.10.1016/j.apal.2019.04.012Suche in Google Scholar

[17] Kurilić, M. S.: Iterated reduced powers of collapsing algebras, Ann. Pure Appl. Logic 176(6) (2025), Art. No. 103567.10.1016/j.apal.2025.103567Suche in Google Scholar

[18] Kurilić, M. S.: Forcing with copies of uncountable ordinals, https://arxiv.org/pdf/2401.00302.Suche in Google Scholar

[19] Kurilić, M. S.—Todorčević, S.: Forcing by non-scattered sets, Ann. Pure Appl. Logic 163 (2012), 1299–1308.10.1016/j.apal.2012.02.004Suche in Google Scholar

[20] Laflamme, C.—Pouzet, M.—Woodrow, R.: Equimorphy: the case of chains, Arch. Math. Logic 56(7–8) (2017), 811–829.10.1007/s00153-017-0545-8Suche in Google Scholar

[21] Laver, R.: On FraĂŻssé’s order type conjecture, Ann. of Math. 93(2) (1971), 89–111.10.2307/1970754Suche in Google Scholar

[22] Moore, J. T.: A five element basis for the uncountable linear orders, Ann. of Math. (2) 163(2) (2006), 669–688.10.4007/annals.2006.163.669Suche in Google Scholar

[23] Pouzet, M.: Application de la notion de relation presque-enchaĂźnable au dĂ©nombrement des restrictions finies d’une relation, Z. Math. Logik Grundlagen Math. 27(4) (1981), 289–332.10.1002/malq.19810271902Suche in Google Scholar

[24] Rosenstein, J. G.: Linear Orderings. Pure Appl. Math., Vol. 98, Academic Press, Inc. Harcourt Brace Jovanovich Publishers, New York-London, 1982.Suche in Google Scholar

[25] Shelah, S.: Power set modulo small, the singular of uncountable cofinality, J. Symbolic Logic 72(1) (2007), 226–242.10.2178/jsl/1174668393Suche in Google Scholar

[26] SierpiƄski, W.: Cardinal and Ordinal Numbers. 2nd revised edition, Monografie Matematyczne, Vol. 34, Panstwowe Wydawnictwo Naukowe (PWN), Warsaw, 1965.Suche in Google Scholar

[27] Simon, P.: Sacks forcing collapses c to b, Comment. Math. Univ. Carolin. 34(4) (1993), 707–710.10.1016/0196-8904(93)90106-KSuche in Google Scholar

[28] Solovay, R. M.: A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56.10.2307/1970696Suche in Google Scholar

Received: 2024-01-03
Accepted: 2025-03-06
Published Online: 2025-10-24
Published in Print: 2025-10-27

© 2025 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Copies of monomorphic structures
  2. Endomorphism kernel property for extraspecial and special groups
  3. Sums of Tribonacci numbers close to powers of 2
  4. Multiplicative functions k-additive on hexagonal numbers
  5. Monogenic even cyclic sextic polynomials
  6. Elegant proofs for properties of normalized remainders of Maclaurin power series expansion of exponential function
  7. Degree of independence in non-archimedean fields
  8. Remarks on some one-ended groups
  9. Some new characterizations of weights for hardy-type inequalities with kernels on time scales
  10. Inequalities for Riemann–Liouville fractional integrals in co-ordinated convex functions: A Newton-type approach
  11. Radius estimates for functions in the class 𝒰r(λ)
  12. Sharp bounds on the logarithmic coefficients of inverse functions for certain classes of univalent functions
  13. More q-congruences from Singh’s quadratic transformation
  14. Stability and controllability of cycled dynamical systems
  15. Existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for k-hessian equations
  16. Strong solution of a Navier-Stokes-Cahn-Hilliard system for incompressible two-phase flows with surfactant
  17. Coincidence points via tri-simulation functions with an application in integral equations
  18. On Fong-Tsui conjecture and binormality of operators
  19. Riemannian maps of CR-submanifolds of Kaehler manifolds
  20. On structural numbers of topological spaces
  21. The Îș-FrĂ©chet-Urysohn property for Cp(X) is equivalent to baireness of B1(X)
  22. Weighted pseudo S-asymptotically (ω, c)-periodic solutions to fractional stochastic differential equations
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0071/html?lang=de
Button zum nach oben scrollen