Startseite Mathematik Reichenbach’s causal completeness of quantum probability spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reichenbach’s causal completeness of quantum probability spaces

  • Dominika Burešová EMAIL logo , Kamila Houšková , Mirko Navara , Pavel Pták , Jan Ševic und Michal Slouka
Veröffentlicht/Copyright: 9. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Reichenbach’s common cause principle (RCCP) is a metaphysical claim about the causal structure of the world. It entails that all correlations can be explained causally either by pointing at the causal connection between the correlated entities or by displaying a common cause of the correlation. We contribute to its mathematical side.

Firstly, after adopting the RCCP axioms, we indicate the importance of positive covariance of events in connection with RCCP. In fact, RCCP is meaningful only for positively correlated events.

Secondly, we find explicit requirements for a state to have a common cause in a quantum logic.

Afterwards, we compare RCCP in the standard (Boolean) case and in the quantum setup that admits new properties of correlation, impossible in the classical case. We show that the notion of maximal correlation differs considerably in these two cases. We answer an open question by providing a counterexample based on a quantum logic given by a free orthomodular lattice.

Subsequently, we find a relation between the Darboux property and RCCP. We invent a new technique for obtaining the central result that atomless σ-complete quantum logics are common cause complete. A variety of new examples is presented.

Finally, we contribute to a fundamental question whether a common cause incomplete quantum logic can be embedded into one that is common cause complete. We contribute by an advanced construction that allows for a positive answer to this question for quantum logics with finitely many atoms and even for some quantum logics with countably many atoms.

MSC 2010: 06C15; 81P05; 81P10

This work was supported by the CTU institutional support (Future Fund).


  1. (Communicated by Anatolij Dvurečenskij)

References

[1] Beran, L.: Orthomodular Lattices. Algebraic Approach, Academia, Prague, 1984.10.1007/978-94-009-5215-7Suche in Google Scholar

[2] Brown, J. B.—Humke, P.—Laczkovich, M.: Measurable Darboux functions, Proc. Amer. Math. Soc. 102 (1988), 603–610.10.1090/S0002-9939-1988-0928988-5Suche in Google Scholar

[3] Buhagiar, D.—Chetcuti, E.: Only ‘free’ measures are admissible on F(S) when the inner product space S is incomplete, Proc. Amer. Math. Soc. 136 (2008), 919–922.10.1090/S0002-9939-07-08982-4Suche in Google Scholar

[4] Burešová, D.: Generalized XOR operation and the categorical equivalence of the Abbott algebras and quantum logics, Internat. J. Theoret. Phys. 62 (2023), Art. No. 98.10.1007/s10773-023-05355-3Suche in Google Scholar PubMed PubMed Central

[5] Calude, C. S.—Longo, G.: The deluge of spurious correlations in big data, Found. Sci. 22 (2016), 1–18.10.1007/s10699-016-9489-4Suche in Google Scholar

[6] De Simone, A.—Navara, M.—Pták, P.: States on systems of sets that are closed under symmetric difference, Math. Nachr. 288 (2015), 1995–2000.10.1002/mana.201500029Suche in Google Scholar

[7] Dvurečenskij, A.—Pulmannová, S.: New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Sci., Dordrecht/Bratislava, 2000.10.1007/978-94-017-2422-7Suche in Google Scholar

[8] Gleason, A. M.: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–893.10.1512/iumj.1957.6.56050Suche in Google Scholar

[9] Greechie, R. J.: On generating distributive sublattices of orthomodular lattices, Proc. Amer. Math. Soc. 67 (1977), 17–22.10.1090/S0002-9939-1977-0450157-9Suche in Google Scholar

[10] Greechie, R. J.: An addendum to “On generating distributive sublattices of orthomodular lattices”, Proc. Amer. Math. Soc. 76 (1979), 216–218.10.2307/2042991Suche in Google Scholar

[11] Gudder, S. P.: Stochastic Methods in Quantum Mechanics, North Holland, New York, 1979.10.1016/0034-4877(79)90056-9Suche in Google Scholar

[12] Halmos, R. P.: Measure Theory, Litton Educational Publishing, Inc., 1950.10.1007/978-1-4684-9440-2Suche in Google Scholar

[13] Halperin, I.: Discontinuous functions with the Darboux property, Canad. Math. Bull. 2 (1959), 111–118.10.4153/CMB-1959-016-1Suche in Google Scholar

[14] Harding, J.: Decompositions in quantum logic, Trans. Amer. Math. Soc. 348 (1996), 1839–1862.10.1090/S0002-9947-96-01548-6Suche in Google Scholar

[15] Hofer-Szabó, G.: The formal existence and uniqueness of the Reichenbachian common cause on Hilbert lattices, Internat. J. Theoret. Phys. 36 (1997), 1973–1980.10.1007/BF02435953Suche in Google Scholar

[16] Hofer-Szabó, G.: Reichenbach’s common cause definition on Hilbert lattices, Internat. J. Theoret. Phys. 37 (1997), 435–443.10.1023/A:1026603809848Suche in Google Scholar

[17] Hofer-Szabó, G.—Rédei, M.—Szabó, L. E.: On Reichenbach’s common cause principle and Reichen-bach’s notion of common cause, British J. Philos. Sci. 50(3) (1999), 1995–2000.10.1093/bjps/50.3.377Suche in Google Scholar

[18] Hofer-Szabó, G.—Rédei, M.—Szabó, L. E.: Common cause completability of classical and quantum probability spaces, Internat. J. Theoret. Phys. 39 (2000), 913–919.10.1023/A:1003643300514Suche in Google Scholar

[19] Hofer-Szabó, G.—Rédei, M.—Szabó, L. E.: The Principle of the Common Cause, Cambridge University Press, Cambridge, 2013.10.1017/CBO9781139094344Suche in Google Scholar

[20] Hyčko, M.—Navara, M.: Decidability in orthomodular lattices, Internat. J. Theoret. Phys. 44 (2005), 2239–2248.10.1007/s10773-005-8019-xSuche in Google Scholar

[21] Kadison, R. V.—Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras. Vol. II, American Mathematical Society, 1997.10.1090/gsm/016Suche in Google Scholar

[22] Kalmbach, G.: Orthomodular Lattices, Academic Press, London, 1983.Suche in Google Scholar

[23] Kitajima, Y.: Reichenbach’s common cause in an atomless and complete orthomodular lattice, Internat. J. Theoret. Phys. 47 (2008), 511–519.10.1007/s10773-007-9475-2Suche in Google Scholar

[24] Klukowski, J.: On the representation of Boolean orthomodular partially ordered sets, Demonstr. Math. 8 (1975), 405–423.10.1515/dema-1975-0404Suche in Google Scholar

[25] Lorenc, P.—Witula, R.: Darboux property of the monotonic σ-additive positive and finitely dimensional vector measures, Scientific Papers of Silesian University of Technology - Organization & Management Series 1899 (2013), 25–36.Suche in Google Scholar

[26] Maňasová, V.—Pták, P.: On states on the product of logics, Internat. J. Theoret. Phys. 20 (1981), 451–457.10.1007/BF00671358Suche in Google Scholar

[27] Matoušek, M.—Pták, P.: Orthocomplemented difference lattices with few generators, Kybernetika (Prague) 47 (2011), 60–73.10.2478/s12175-010-0033-7Suche in Google Scholar

[28] Nădăban, S.: From classical logic to fuzzy logic and quantum logic: A general view, Int. J. Comp. Commun. & Control 16 (2021).10.15837/ijccc.2021.1.4125Suche in Google Scholar

[29] Navara, M.—Rogalewicz, V.: The pasting constructions for orthomodular posets, Math. Nachr. 154 (1991), 157–168.10.1002/mana.19911540113Suche in Google Scholar

[30] Olejček, V.: Darboux property of finitely additive measure on δ-ring, Math. Slovaca 27 (1977), 195–201.Suche in Google Scholar

[31] Pták, P.—Pulmannová, S.: Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.Suche in Google Scholar

[32] Reichenbach, H.: The Direction of Time, University of California Press, Berkeley, 1956.10.1063/1.3059791Suche in Google Scholar

[33] Sikorski, R.: Boolean Algebras, Springer, Heidelberg, 1969.10.1007/978-3-642-85820-8Suche in Google Scholar

[34] Solovay, R. M.: Real-valued measurable cardinals. Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428.10.1090/pspum/013.1/0290961Suche in Google Scholar

[35] Suppes, P.—Zanotti, M.: Necessary and sufficient conditions for existence of a unique measure strictly agreeing with a qualitative probability ordering, J. Philos. Logic 5 (1976), 431–438.10.1007/BF00649401Suche in Google Scholar

[36] Svozil, K.: Quantum Logic, Springer-Verlag, Singapore, 1998.Suche in Google Scholar

[37] Tkadlec, J.: Conditions that force an orthomodular poset to be a Boolean algebra, Tatra Mt. Math. Publ. 10 (1997), 55–62.Suche in Google Scholar

[38] Von Neumann, J.—Beyer, R. T.: Mathematical Foundations of Quantum Mechanics: New Edition, Princeton University Press, 2018.10.23943/princeton/9780691178561.001.0001Suche in Google Scholar

[39] Vigen, T.: Spurious Correlations, Hachette Books, New York, 2015.Suche in Google Scholar

[40] Watanabe, S.: Modified concepts of logic, probability, and information based on generalized continuous characteristic function, Inf. and Control 15 (1969), 1–21.10.1016/S0019-9958(69)90581-6Suche in Google Scholar

[41] Wigner, E. P.: Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Translation from German by J.J. Griffin, Academic Press, New York, 1959.Suche in Google Scholar

Received: 2024-11-08
Accepted: 2025-02-20
Published Online: 2025-08-09
Published in Print: 2025-08-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0055/html?lang=de
Button zum nach oben scrollen