Startseite Oscillation and asymptotic criteria for certain third-order neutral differential equations involving distributed deviating arguments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillation and asymptotic criteria for certain third-order neutral differential equations involving distributed deviating arguments

  • Zhen Hou und Yibing Sun EMAIL logo
Veröffentlicht/Copyright: 9. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper examines the oscillation and asymptotic properties of a class of third-order neutral differential equations with distributed deviating arguments by employing comparison principles. A series of oscillation criteria are derived, which essentially extend and improve the existing related results and generalize to more general third-order differential equations by removing several constraints. Some examples are also provided to demonstrate our main results.

MSC 2010: 34K11

This work was supported by the National Natural Science Foundation of China (Grant No. 61803176, 62203185), and the Natural Science Foundation of Shandong Province (ZR2022QF108).


  1. (Communicated by Irena Jadlovská)

References

[1] Ademola, A.—Arawomo, P.—Adesina, O.—Okoya, S.: On the behaviour of solutions to a kind of third order nonlinear neutral differential equation with delay, Turk. J. Math. 46 (2022), 3139–3158.10.55730/1300-0098.3324Suche in Google Scholar

[2] Al Themairi, A.—Qaraad, B.—Bazighifan, O.—Nonlaopon, K.: Third-order neutral differential equations with damping and distributed delay: New asymptotic properties of solutions, Symmetry 14 (2022), Art. 2192.10.3390/sym14102192Suche in Google Scholar

[3] Aldiaiji, M.—Qaraad, B.—Iambor, L. F.—Elabbasy, E. M.: On the asymptotic behavior of class of third-order neutral differential equations with symmetrical and advanced argument, Symmetry 15 (2023), Art. 1156.10.3390/sym15061165Suche in Google Scholar

[4] Alzabut, J.—Grace, S. R.—Santra, S. S.—Chhatria, G. N.: Asymptotic and oscillatory behaviour of third order non-linear differential equations with canonical operator and mixed neutral terms, Qual. Theory Dyn. Syst. 22 (2023), Art. 15.10.1007/s12346-022-00715-6Suche in Google Scholar

[5] Baculíková, B.—Džurina, J.: On the asymptotic behavior of a class of third order nonlinear neutral differential equations, Cent. Eur. J. Math. 8 (2010), 1091–1103.10.2478/s11533-010-0072-xSuche in Google Scholar

[6] Baculíková, B.—Džurina, J.: Oscillation of third-order neutral differential equations, Math. Comput. Model. 52 (2010), 215–226.10.1016/j.mcm.2010.02.011Suche in Google Scholar

[7] Baculíková, B.—Džurina, J.: On certain inequalities and their applications in the oscillation theory, Adv. Differ. Equ. 2013 (2013), Art. 165.10.1186/1687-1847-2013-165Suche in Google Scholar

[8] Bartušek, M.: Oscillation of third-order neutral differential equations with oscillatory operator, Turk. J. Math. 46 (2022), 3069–3082.10.55730/1300-0098.3320Suche in Google Scholar

[9] Candan, T.: Oscillation criteria and asymptotic properties of solutions of third-order nonlinear neutral differential equations, Math. Methods Appl. Sci. 38 (2015), 1379–1392.10.1002/mma.3153Suche in Google Scholar

[10] Chatzarakis, G. E.—Grace, S. R.—Jadlovská, I.—LI, T.—Tunç, E.: Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity 2019 (2019), Art. ID 5691758.10.1155/2019/5691758Suche in Google Scholar

[11] Džurina, J.—Thandapani, E.—Tamilvanan, S.: Oscillation of solutions to third-order half-linear neutral differential equations, Electron. J. Diff. Equ. 2012 (2012), Art. 29.10.7153/dea-04-23Suche in Google Scholar

[12] Feng, L.—Sun, S.: Oscillation of second-order Emden-Fowler neutral differential equations with advanced and delay arguments, Bull. Malays. Math. Sci. Soc. 43 (2020), 3777–3790.10.1007/s40840-020-00901-2Suche in Google Scholar

[13] Feng, L.—Han, Z.: Oscillation of a class of third-order neutral differential equations with noncanonical operators, Bull. Malays. Math. Sci. Soc. 44 (2021), 2519–2530.10.1007/s40840-021-01079-xSuche in Google Scholar

[14] Feng, Q.—Zheng, B.: Oscillation criteria for nonlinear third-order delay dynamic equations on time scales involving a super-linear neutral term, Fractal Fract. 8 (2024), Art. 115.10.3390/fractalfract8020115Suche in Google Scholar

[15] Fu, Y.—Tian, Y.—Jiang, C.—Li, T.: On the asymptotic properties of nonlinear third-order neutral delay differential equations with distributed deviating arguments, J. Funct. Space. 2016 (2016), Art. ID 3954354.10.1155/2016/3954354Suche in Google Scholar

[16] Grace, S. R.—Graef, J. R.—Tunç, E.: On oscillatory behavior of third order half-linear delay differential equations, Math. Slovaca. 73 (2023), 729–736.10.1515/ms-2023-0053Suche in Google Scholar

[17] Grace, S. R.—Jadlovská, I.—Tunç, E.: Oscillatory and asymptotic behavior of third-order nonlinear differential equations with a superlinear neutral term, Turk. J. Math. 44 (2020), 1317–1329.10.3906/mat-2004-85Suche in Google Scholar

[18] Graef, J. R.—Jadlovská, I.—Tunç, E.: New oscillation criteria for odd-order neutral differential equations, Nonlinear Stud. 29 (2022), 347–352.10.26351/FDE/29/1-2/4Suche in Google Scholar

[19] Graef, J. R.—Grace, S. R.—Jadlovská, I.—Tunç, E.: Some new oscillation results for higher-order nonlinear differential equations with a nonlinear neutral term, Mathematics 10 (2022), Art. 2997.10.3390/math10162997Suche in Google Scholar

[20] Graef, J. R.—Jadlovská, I.—Tunç, E.: Oscillation of odd-order differential equations with a non-positive sublinear neutral term and distributed deviating arguments, Appl. Anal. Discret. Math. 16 (2022), 350–364.10.2298/AADM200918012GSuche in Google Scholar

[21] Hassan, T. S.—Sun, Y. G.—Menaem, A. A.: Improved oscillation results for functional nonlinear dynamic equations of second order, Mathematics 8 (2020), Art. 1897.10.3390/math8111897Suche in Google Scholar

[22] Hassan, T. S.—El-Matary, B. M.: Asymptotic behavior and oscillation of third-order nonlinear neutral differential equations with mixed nonlinearities, Mathematics 11 (2023), Art. 424.10.3390/math11020424Suche in Google Scholar

[23] Jiang, Y.—Jiang, C.—Li, T.: Oscillatory behavior of third-order nonlinear neutral delay differential equations, Adv. Differ. Equ. 2016 (2016), Art. 171.10.1186/s13662-016-0902-7Suche in Google Scholar

[24] Jiang, C.—Jiang, Y.—Li, T.: Asymptotic behavior of third-order differential equations with nonpositive neutral coefficients and distributed deviating arguments, Adv. Differ. Equ. 2016 (2016), Art. 105.10.1186/s13662-016-0833-3Suche in Google Scholar

[25] Ladde, G. S.—Lakshmikantham, V.—Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments, Dekker, New York, 1987.Suche in Google Scholar

[26] Li, H.—Zhao, Y.—Han, Z.: New oscillation criterion for Emden-Fowler type nonlinear neutral delay differential equations, J. Appl. Math. Comput. 60 (2019), 191–200.10.1007/s12190-018-1208-6Suche in Google Scholar

[27] Li, W.—Yu, Y.: Oscillatory behavior of third-order nonlinear differential equations with a sublinear neutral term, Acta Math. Appl. Sin. Engl. Ser. 38 (2022), 484–496.10.1007/s10255-022-1089-1Suche in Google Scholar

[28] Liu, Q.—Grace, S. R.—Jadlovská, I.—Tunç, E.—Li, T.: On the asymptotic behavior of noncanonical third-order Emden-Fowler delay differential equations with a superlinear neutral term, Mathematics 10 (2022), Art. 2920.10.3390/math10162902Suche in Google Scholar

[29] Moaaz, O.—Alnafisah, Y.: An improved approach to investigate the oscillatory properties of third-order neutral differential equations, Mathematics 11 (2023), Art. 2290.10.3390/math11102290Suche in Google Scholar

[30] Moaaz, O.—Muhib, A.—Ahmad, H.—Muhsin, W.: Iterative criteria for oscillation of third-order delay differential equations with p-Laplacian operator, Math. Slovaca 73 (2023), 703–712.10.1515/ms-2023-0051Suche in Google Scholar

[31] Özdemir, O.—Tunç, E.: Asymptotic behavior and oscillation of solutions of third order neutral dynamic equations with distributed deviating arguments, Bull. Math. Anal. Appl. 10 (2018), 31–52.Suche in Google Scholar

[32] Philos, C. G.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math. (Basel) 36 (1981), 168–178.10.1007/BF01223686Suche in Google Scholar

[33] Qaraad, B.—Moaaz, O.—Baleanu, D.—Santra, S. S.—Ali, R.—Elabbasy, E. M.: Third-order neutral differential equations of the mixed type: Oscillatory and asymptotic behavior, Math. Biosci. Eng. 19 (2022), 1649–1658.10.3934/mbe.2022077Suche in Google Scholar PubMed

[34] Qaraad, B.—Bazighifan, O.—Ali, A. H.—Al-Moneef, A.A.—Alqarni, A. J.—Nonlaopon, K.: Oscillation results of third-order differential equations with symmetrical distributed arguments, Symmetry 14 (2022), Art. 2038.10.3390/sym14102038Suche in Google Scholar

[35] Salem, S.—El-Sheikh, M.—Hassan, A. M.: On the oscillation and asymptotic behavior of solutions of third order nonlinear differential equations with mixed nonlinear neutral terms, Turk. J. Math. 48 (2024), 221–247.10.55730/1300-0098.3503Suche in Google Scholar

[36] Shi, S.—Han, Z.: Oscillation of second order mixed functional differential equations with sublinear and superlinear neutral terms, Turk. J. Math. 46 (2022), 3045–3056.10.55730/1300-0098.3317Suche in Google Scholar

[37] Sui, Y.—Sun, S.: Oscillation of Emden-Fowler type nonlinear neutral delay dynamic equation on time scales, J. Appl. Math. Comput. 60 (2019), 291–301.10.1007/s12190-018-1214-8Suche in Google Scholar

[38] Sui, Y.—Han, Z.: Oscillation of second order neutral dynamic equations with deviating arguments on time scales, Adv. Differ. Equ. 2018 (2018), Art. 337.10.1186/s13662-018-1773-xSuche in Google Scholar

[39] Sui, Y.—Han, Z.: Oscillation of second order nonlinear dynamic equations with a nonlinear neutral term on time scales, J. Appl. Anal. Comput. 8 (2018), 1811–1820.10.11948/2018.1811Suche in Google Scholar

[40] Sui, Y.—Han, Z.: Oscillation of third-order nonlinear delay dynamic equation with damping term on time scales, J. Appl. Math. Comput. 58 (2018), 577–599.10.1007/s12190-017-1158-4Suche in Google Scholar

[41] Sui, Y.—Sun, S.: Oscillation of third order nonlinear damped dynamic equation with mixed arguments on time scales, Adv. Differ. Equ. 233 (2018), 1–17.10.1186/s13662-018-1654-3Suche in Google Scholar

[42] Sun, Y.—Zhao, Y.—Xie, Q.: Oscillation criteria for third-order neutral differential equations with unbounded neutral coefficients and distributed deviating arguments, Turk. J. Math. 46 (2022), 1099–1112.10.55730/1300-0098.3145Suche in Google Scholar

[43] Sun, Y.—Zhao, Y.—Xie, Q.: Oscillation and asymptotic behavior of the third-order neutral differential equation with damping and distributed deviating arguments, Qual. Theory Dyn. Syst. 22 (2023), Art. 50.10.1007/s12346-022-00733-4Suche in Google Scholar

[44] Sun, Y.—Zhao, Y.: Oscillatory and asymptotic behavior of third-order neutral delay differential equations with distributed deviating arguments, AIMS Math. 5 (2020), 5076–5093.10.3934/math.2020326Suche in Google Scholar

[45] Sun, Y.—Zhao, Y.: Oscillatory behavior of third-order neutral delay differential equations with distributed deviating arguments, J. Inequal. Appl. 2019 (2019), Art. 207.10.1186/s13660-019-2161-0Suche in Google Scholar

[46] Sun, Y.—Zhao, Y.: Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments, Appl. Math. Lett. 111 (2021), Art. 106600.10.1016/j.aml.2020.106600Suche in Google Scholar

[47] Sun, Y.—Zhao, Y.: Oscillation theorems and asymptotic behaviour of certain third-order neutral differential equations with distributed deviating arguments, Int. J. Dyn. Syst. Differ. Equ.11 (2021), 174–189.10.1504/IJDSDE.2021.115181Suche in Google Scholar

[48] Sun, Y.—Zhao, Y.: Oscillation and asymptotic behavior of third-order nonlinear neutral delay differential equations with distributed deviating arguments, J. Appl. Anal. Comput. 8 (2018), 1796–1810.10.11948/2018.1796Suche in Google Scholar

[49] Tian, Y.—Cai, Y.—Fu, Y.—Li, T: Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, Adv. Differ. Equ. 2015 (2015), Art. 267.10.1186/s13662-015-0604-6Suche in Google Scholar

[50] Tunç, E.: Oscillatory and asymptotic behavior of third-order neutral diferential equations with distributed deviating arguments, Electron. J. Diff. Equ. 2017 (2017), Art. 16.10.1186/s13662-017-1187-1Suche in Google Scholar

[51] Wang, Y.—Meng, F.—Gu, J.: Oscillation criteria of third-order neutral differential equations with damping and distributed deviating arguments, Adv. Differ. Equ. 2021 (2021), Art. 515.10.1186/s13662-021-03661-wSuche in Google Scholar

[52] Zhang, Q.—Gao, L.—Yu, Y.: Oscillation criteria for third-order neutral differential equations with continuously distributed delay, Appl. Math. Lett. 25 (2012), 1514–1519.10.1016/j.aml.2012.01.007Suche in Google Scholar

Received: 2024-09-04
Accepted: 2025-02-12
Published Online: 2025-08-09
Published in Print: 2025-08-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0061/html
Button zum nach oben scrollen