Startseite Mathematik On some recent selective properties involving networks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On some recent selective properties involving networks

  • Maddalena Bonanzinga , Davide Giacopello EMAIL logo , Santi Spadaro und Lyubomyr Zdomskyy
Veröffentlicht/Copyright: 9. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we investigate R-, H-, and M-nw-selective properties introduced in [Bonanzinga, M.—Giacopello, D.: A generalization of M-separability by networks, Atti Accad. Peloritana dei Pericolanti Cl. Sci. Fis. Mat. Nat. 101(2) (2023), A11]. In particular, we provide consistent uncountable examples of such spaces and we define trivial R-, H-, and M-nw-selective spaces the ones with countable net weight having, additionally, the cardinality and the weight strictly less then cov(𝓜), 𝔟, and 𝔡, respectively. Since we establish that spaces having cardinalities more than cov(𝓜), 𝔟, and 𝔡, fail to have the R-, H-, and M-nw-selective properties, respectively, non-trivial examples should eventually have weight greater than or equal to these small cardinals. Using forcing methods, we construct consistent countable non-trivial examples of R-nw-selective and H-nw-selective spaces and we establish some limitations to constructions of non-trivial examples. Moreover, we consistently prove the existence of two H-nw-selective spaces whose product fails to be M-nw-selective. Finally, we study some relations between nw-selective properties and a strong version of the HFD property.

  1. (Communicated by L'ubica Holá)

Acknowledgement

The first two authors in alphabetical order would like to thank the “National Group for Algebric and Geometric Structures, and their Applications”(GNSAGA-INdAM) for their invaluable support throughout the course of this research. The research of the fourth author was funded in whole by the Austrian Science Fund (FWF) [DOI 10.55776/I5930 and 10.55776/PAT5730424]. A part of the research was completed while the fourth author was visiting the third one at the University of Palermo in Fall 2023, the fourth author would like to thank the third one for his great hospitality.

References

[1] Arhangel’skii, A. V.: Hurewicz spaces, analytic sets and fan tightness of function spaces, Sov. Math. Dokl. (1986), 396–399,Suche in Google Scholar

[2] Arhangel’skii, A. V.: Topological Functions Spaces, Kluwer Academic Publisher, 1992.Suche in Google Scholar

[3] Aurichi, L. F.—Bonanzinga, M.—Giacopello, D.: On some topological games involving networks, Topology Appl. 351 (2024), Art. ID 108936.10.1016/j.topol.2024.108936Suche in Google Scholar

[4] Bailey, B.: I-weight of compact and locally compact LOTS, Comment. Math. Univ. Carolin. 48(4) (2007), 677–688.Suche in Google Scholar

[5] Bartoszyński, T.: Combinatorial aspects of measure and category, Fund. Math. 127(3) (1987), 225–239.10.4064/fm-127-3-225-239Suche in Google Scholar

[6] Bartoszyński, T.—Judah, H.: Set Theory. On the Structure of the Real Line, A K Peters, 1995.10.1201/9781439863466Suche in Google Scholar

[7] Bartoszyński, T.—Scheepers, M.: A-sets, Real Anal. Exchange 19 (1993/94), 521–528.10.2307/44152401Suche in Google Scholar

[8] Bella, A.—Bonanzinga, M.—Matveev, M. V.: Variations of selective separability, Topology Appl. 156 (2009), 1241–1252.10.1016/j.topol.2008.12.029Suche in Google Scholar

[9] Bella, A.—Bonanzinga, M.—Matveev, M. V.—TKACHUK, V. V.: Selective separability: general facts and behaviour in countable spaces, Topology Proc. 32 (2008), 15–30.Suche in Google Scholar

[10] Bella, A.—Matveev, M.—Spadaro, S.: Variations of selective separability II: Discrete sets and the influence of convergence and maximality, Topology Appl. 159 (2012), 253–271.10.1016/j.topol.2011.09.005Suche in Google Scholar

[11] Bonanzinga, M.—Cammaroto, F.—Matveev, M. V.: Projective versions of selection principles, Topology Appl. 157 (2010), 874–893.10.1016/j.topol.2009.12.004Suche in Google Scholar

[12] Bonanzinga, M.—Cammaroto, F.—Pansera, B. A.—Tsaban, B.: Diagonalizations of dense families, Topology Appl. 165 (2014), 12–25.10.1016/j.topol.2014.01.001Suche in Google Scholar

[13] Bonanzinga, M.—Giacopello, D.: A generalization of M-separability by networks, Atti Accad. Pelori-tana dei Pericolanti Cl.Sci.Fis.Mat.Nat. 101(2) (2023), A11.Suche in Google Scholar

[14] Brendle, J.: Generic constructions of small sets of reals, Topology Appl. 71 (1996), 125–147.10.1016/0166-8641(95)00071-2Suche in Google Scholar

[15] Bukovský, L.—Reclaw, I.—Repický, M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25–40.10.1016/0166-8641(91)90098-7Suche in Google Scholar

[16] Van Douwen, E. K.: The integers and topology. In: Handbook of Set-Theoretic Topology (K. Kunen, J. E. Vaughan, eds.) Elsevier Science Publishers B. V., 1984, pp. 111–167.10.1016/B978-0-444-86580-9.50006-9Suche in Google Scholar

[17] Engelking, R.: General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, 1989.Suche in Google Scholar

[18] Juhász, I.: Consistent Results in Topology. In: Handbook of Mathematical Logic (J. Barwise ed.), North Holland, 1977.10.1016/S0049-237X(08)71112-1Suche in Google Scholar

[19] Juhász, I.: HFD and HFC type spaces, with applications, Topology Appl. 126 (2002), 217–262.10.1016/S0166-8641(02)00080-9Suche in Google Scholar

[20] Just, W.—Miller, A. W.—Scheepers, M.—Szeptycki, P. J.: The combinatorics of open covers II, Topology Appl. 73 (1996), 241–266.10.1016/S0166-8641(96)00075-2Suche in Google Scholar

[21] Fremlin, D. H.—Miller, A. W.: On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.10.4064/fm-129-1-17-33Suche in Google Scholar

[22] Gruenhage, G.—Sakai, M.: Selective separability and its variations, Topology Appl. 158 (2011), 1352–1359.10.1016/j.topol.2011.05.009Suche in Google Scholar

[23] Hurewicz, W.: Über die Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.10.1007/BF01216792Suche in Google Scholar

[24] Hurewicz, W.: Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193–204.10.4064/fm-9-1-193-210Suche in Google Scholar

[25] Kechis, A. S.: Classical Descriptive Set Theory, Springer, New York, NY, (1995).10.1007/978-1-4612-4190-4Suche in Google Scholar

[26] Kočinać, L. D.—Scheepers, M.: Function spaces and a property of Reznichenko, Topology Appl. 123 (2002), 135–143.10.1016/S0166-8641(01)00177-8Suche in Google Scholar

[27] Kočinać, L. D..—Scheepers, M.: Combinatorics of open covers. VII. Groupability, Fund. Math. 179 (2003), 131–155.10.4064/fm179-2-2Suche in Google Scholar

[28] Lelek, A.: Some cover properties of spaces, Fund. Math. 64 (1969), 209–218.10.4064/fm-64-2-209-218Suche in Google Scholar

[29] Menger, K.: Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte, Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie) 133 (1924), 421–444.Suche in Google Scholar

[30] Miller, A.—Tsaban, B.: Point-cofinite covers in the Laver model, Proc. Amer. Math. Soc. 138 (2010), 3313–3321.10.1090/S0002-9939-10-10407-9Suche in Google Scholar

[31] Miller, A.—Tsaban, B.—Zdomskyy, L.: Selective covering properties of product spaces, Ann. Pure Appl. Logic 165 (2014), 1034–1057.10.1016/j.apal.2014.01.001Suche in Google Scholar

[32] Rothberger, F.: Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50–55.10.4064/fm-30-1-50-55Suche in Google Scholar

[33] Sakai, M.: Property Cʹʹ and function spaces, Proc. Amer. Math. Soc. 104(3) (1988), 917–919.10.1090/S0002-9939-1988-0964873-0Suche in Google Scholar

[34] Sakai, M.: Special subsets of reals characterizing local properties of function spaces. In: Selection Principles and Covering Properties in Topology (L. D. R. Kočinać ed.), Quad. Mat. 18 (2007), 195–225.Suche in Google Scholar

[35] Scheepers, M.: Combinatorics of open covers (I): Ramsey theory, Topology Appl. 69 (1996), 31–62.10.1016/0166-8641(95)00067-4Suche in Google Scholar

[36] Scheepers, M.: The length of some diagonalizations games, Arch. Math. Logic 38 (1999), 103–122.10.1007/s001530050117Suche in Google Scholar

[37] Scheepers, M.: Combinatorics of Open Covers (VI): Selectors for sequences of dense sets, Quaest. Math. 22 (1999), 109–130.10.1080/16073606.1999.9632063Suche in Google Scholar

[38] Scheepers, M.: Remarks on Countable Tightness, Topology Appl. 161 (2014), 407–432.10.1016/j.topol.2013.11.001Suche in Google Scholar

[39] Scheepers, M.—Tsaban, B.: The combinatorics of Borel covers, Topology Appl. 121 (2002), 357–382.10.1016/S0166-8641(01)00078-5Suche in Google Scholar

[40] Soukup, D. T.—Soukup, L.—Spadaro, S.: Comparing weak versions of separability, Topology Appl. 160 (2013), 2538–2566.10.1016/j.topol.2013.07.048Suche in Google Scholar

[41] Weston, J. H.—Shilleto, J.: Cardinalities of dense sets, General Topology Appl. 6 (1976), 227–240.10.1016/0016-660X(76)90035-0Suche in Google Scholar

[42] Zdomskyy, L.: Products of Menger spaces in the Miller model, Adv. Math. 335 (2018), 170–179.10.1016/j.aim.2018.06.016Suche in Google Scholar

Received: 2024-07-30
Accepted: 2025-03-07
Published Online: 2025-08-09
Published in Print: 2025-08-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0068/html
Button zum nach oben scrollen