Startseite Mathematik A note on derivations into annihilators of the ideals of banach algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A note on derivations into annihilators of the ideals of banach algebras

  • Ebrahim Nasrabadi EMAIL logo , Mohammad Reza Miri und Javad Momeni
Veröffentlicht/Copyright: 9. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In a recent study, Teymouri et al. [Derivations into annihilators of the ideals of Banach algebras, Demonstr. Math. 52(1) (2019), 949–958] introduced the notions of AJ weak amenability and quotient ideal amenability for a Banach algebra A relative to a closed two-sided ideal J. They investigated the connection between the AJ -weak amenability of A and the weak amenability of AJ. However, their primary theorem relied on a flawed conclusion, and Theorem 2.13 in their work includes an incorrect result. In this paper, we present counterexamples to highlight these issues, then refine and establish their main theorem under less restrictive assumptions. Additionally, we provide alternative results and extend the analysis of these concepts to specific classes of Banach algebras, particularly triangular Banach algebras.

2020 Mathematics Subject Classification: Primary 46H10; Secondary 46H20; 46H25

Acknowledgement

We would like to sincerely thank the anonymous referees for their valuable feedback and constructive suggestions, which significantly improved the quality of this paper.

  1. (Communicated by Emanuel Chetcuti)

References

[1] Bade, W. G.—Curtis, P. C.—Dales, H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55(3) (1987), 359–377.10.1093/plms/s3-55_2.359Suche in Google Scholar

[2] Forrest, B. E.—Marcoux, L. W.: Weak amenability of triangular Banach algebras, Tranc. Amer. Math. Soc. 354(4) (2002), 1435–1452.10.1090/S0002-9947-01-02957-9Suche in Google Scholar

[3] Gorgi, M. E.—Yazdanpanah, T.: Derivations into duals of ideals of Banach algebra, Proc. Indian Acad. Sci. 114(4) (2004), 399–408.10.1007/BF02829444Suche in Google Scholar

[4] Jabbari, A.: On ideal amenability of Banach algebras, J. Math. Phy. Anal. Geom. 8(2) (2012), 135–143.Suche in Google Scholar

[5] Johnson, B. E.: Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127 (1972), 96 pp.10.1090/memo/0127Suche in Google Scholar

[6] Mewomo, O. T.: On ideal amenability in Banach algebras, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) LVI (2010), 273–278.10.2478/v10157-010-0019-3Suche in Google Scholar

[7] Minapoor, A.—Bodaghi, A.—Bagha, D. E.: Ideal Connes-amenability of dual Banach algebras, Mediterr. J. Math. 14(4) (2017), Art. No. 174.10.1007/s00009-017-0970-2Suche in Google Scholar

[8] Nasrabadi, E.—Pourabbas, A.: Weak module amenability of triangular Banach algebras, Math. Slovaca 61 (2011), 949–958.10.2478/s12175-011-0061-ySuche in Google Scholar

[9] Nasrabadi, E.: Weak module amenability of triangular Banach algebras II, Math. Slovaca 69 (2019), 425–432.10.1515/ms-2017-0234Suche in Google Scholar

[10] Runde, V.: Lectures on Amenability. Lecture Notes in Math., Vol. 1774, Springer-Verlag Berlin Heidelberg, 2002.10.1007/b82937Suche in Google Scholar

[11] Tabadkan, G. A.: Ideal amenability of triangular Banach algebras, Int. J. Analysis 26 (2010), 1285–1290.Suche in Google Scholar

[12] Teymouri, A.—Bodaghi, A.—Bagha, D. E.: Derivations into annihilators of the ideals of Banach algebras, Demonstr. Math. 52(1) (2019), 20–28.10.1515/dema-2019-0004Suche in Google Scholar

Received: 2024-11-07
Accepted: 2025-01-16
Published Online: 2025-06-09
Published in Print: 2025-06-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0047/pdf
Button zum nach oben scrollen