Startseite Generalised class groups in dihedral and fake ℤp-extensions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalised class groups in dihedral and fake ℤp-extensions

  • Filippo A. E. Nuccio Mortarino Majno Di Capriglio EMAIL logo
Veröffentlicht/Copyright: 9. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study generalised class groups in dihedral extensions of number fields, focusing both on its p-adic and -adic properties along fake ℤp-extensions, where p and are distinct odd primes. Our results generalise previous works in the (pro)-dihedral setting, with applications to the study of more general fake Iwasawa theories beyond the classical case of standard class groups.


This work is licensed under a CC-BY 4.0 licence. I am grateful to the two referees whose comments and suggestions helped improved the presentation. I am also deeply indebted to Luca Caputo for his comments on a first draft of the manuscript, in particular for pointing out an error in the first version of Proposition 2.11.

I take this opportunity to correct two typos introduced by the copy-editor while preparing the publisher version of my joint work [CN20]:

  • p. 5, line -5: . . . cδ is multiplied by −1 on H2(G, ℤ)… should be replaced with . . . cδ is multiplication by −1 on H2(G, ℤ)…

  • p. 11, line 1: . . . since NL/K ι L/K is multiplied by 2 = [L : K] … should be replaced with . . . since NL/K ι L/K is multiplication by 2 = [L : K] …


  1. (Communicated by István Gaál)

References

[ABK+24] Asgeirson, D.—Brasca, R.—Kuhn, N.—Nuccio Mortarino Majno Di Capriglio, F. A. E.—Topaz, A.: Categorical foundations of formalized condensed mathematics, J. Symb. Log. (2024), 1–28.10.1017/jsl.2024.69Suche in Google Scholar

[BDNN21] Baanen, A.—Dahmen, S. R.—Narayanan, A.—Nuccio Mortarino Majno Di Capriglio, F. A. E.: A formalization of Dedekind domains and class groups of global fields. In: 12th International Conference on Interactive Theorem Proving (ITP 2021), Dagstuhl, Germany (L. Cohen, C. Kaliszyk, eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 193, Schloss Dagstuhl–Leibniz-Zentrum f¨ur Informatik, 2021, pp. 5:1–5:19.Suche in Google Scholar

[BDNN22] Baanen, A.—Dahmen, S. R.—Narayanan, A.—Nuccio Mortarino Majno Di Capriglio, F. A. E.: A formalization of Dedekind domains and class groups of global fields, J. Automat. Reason. 66(4) (2022), 611–637.10.1007/s10817-022-09644-0Suche in Google Scholar

[BL23] Bandini, A.—Longhi, I.: The algebraZZpd and applications to Iwasawa theory, https://arxiv.org/abs/2312.04666v1 (2023), version 1.Suche in Google Scholar

[BN18] Billerey, N.—Nuccio Mortarino Majno Di Capriglio, F. A. E.: Représentations galoisi-ennes diédrales et formes à multiplication complexe, J. Théor. Nombres Bordeaux 30(2) (2018), 651–670.10.5802/jtnb.1043Suche in Google Scholar

[CN20] Caputo, L.—Nuccio Mortarino Majno Di Capriglio, F. A. E.: Class number formula for dihedral extensions, Glasgow Math. J. 62(2) (2020), 323–353.10.1017/S0017089519000144Suche in Google Scholar

[CN23] Caputo, L.—Nuccio Mortarino Majno Di Capriglio, F. A. E.: Cohomology of normic systems and fakep-extensions, New York J. Math. 29 (2023), 1196–1272.Suche in Google Scholar

[CS10] Coates, J.—Sujatha, R.: Galois Cohomology of Elliptic Curves, 2nd ed., Narosa Publishing House, New Delhi, Tata Institute of Fundamental Research Publications, Mumbai, 2010.Suche in Google Scholar

[dFF22] De Frutos-FernáNdez, M. I.: Formalizing the Ring of Adèles of a Global Field. In: 13th International Conference on Interactive Theorem Proving (ITP 2022), Dagstuhl, Germany, (J. Andronick, L. de Moura, eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 237, Schloss Dagstuhl– Leibniz-Zentrum f¨ur Informatik, 2022, pp. 14:1–14:18.Suche in Google Scholar

[dFFN24] De Frutos-FernáNdez, M. I.—Nuccio Mortarino Majno Di Capriglio, F. A. E.: A formalization of complete discrete valuation rings and local fields, Proceedings of the 13th ACM SIG-PLAN International Conference on Certified Programs and Proofs, New York, NY, USA, CPP 2024, Association for Computing Machinery, 2024, pp. 190–204.10.1145/3636501.3636942Suche in Google Scholar

[Iwa73] Iwasawa, K. Onl-extensions of algebraic number fields, Ann. Math. (1973), 246–326.10.2307/1970784Suche in Google Scholar

[KL23] Kundu, D.—Lei, A.: Growth of p-parts of ideal class groups and fine Selmer groups inq-extensions with p = q, Acta Arith. 207(4) (2023), 297–313.10.4064/aa220518-28-2Suche in Google Scholar

[KNS24] Kundu, D.—Nuccio Mortarino Majno Di Capriglio, F. A. E.—Sujatha, R.: Structure of fine Selmer groups in abelian p-adic Lie extensions, Osaka J. Math. 61(1) (2024), 121–146.Suche in Google Scholar

[Liv23] Livingston, A.: Group Cohomology in the Lean Community Library. In: 14th International Conference on Interactive Theorem Proving (ITP 2023), Dagstuhl, Germany, (A. Naumowicz, R. Thiemann, eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 268, Schloss Dagstuhl–Leibniz-Zentrum f¨ur Informatik, 2023, pp. 22:1–22:17.Suche in Google Scholar

[mC20] The Mathlib Community: The Lean mathematical library. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, POPL ’20, ACM, January 2020.10.1145/3372885.3373824Suche in Google Scholar

[NOR23] Nuccio Mortarino Majno Di Capriglio, F. A. E.—Ochiai, T.—Ray, J.: A formal model of Coleman families and applications to Iwasawa invariants, Ann. Math. Qué. 48 (2024), 453–475.10.1007/s40316-023-00217-0Suche in Google Scholar

[NS23] Nuccio Mortarino Majno Di Capriglio, F. A. E.—Sujatha, R.: Residual supersingular Iwasawa theory and signed Iwasawa invariants, Rend. Semin. Mat. Univ. Padova 149 (2023), 83–129.10.4171/rsmup/111Suche in Google Scholar

[NSW08] Neukirch, J.—Schmidt, A.—Wingberg, K.: Cohomology of Number Fields, 2nd ed., Grundlehren Math. Wiss., Vol. 323, Springer-Verlag, Berlin, 2008.10.1007/978-3-540-37889-1Suche in Google Scholar

[Nuc10] Nuccio Mortarino Majno Di Capriglio, F. A. E.: Cyclotomic units and class groups inp-extensions of real abelian fields, Math. Proc. Cambridge Philos. Soc. 148(1) (2010), 93–106.10.1017/S0305004109990119Suche in Google Scholar

[Oza95] Ozaki, M: A note on the capitulation inp-extensions, Proc. Japan Acad. Ser. A Math. Sci. 71(9) (1995), 218–219.10.3792/pjaa.71.218Suche in Google Scholar

[Rio25] Riou, J.: Formalization of derived categories in Lean/mathlib, Annals of Formalized Mathematics (2025), to appear; https://hal.science/hal-04546712v4Suche in Google Scholar

[Rub88] Rubin, K: On the main cojecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93(3) (1988), 701–714.10.1007/BF01410205Suche in Google Scholar

[Ser67] Serre, J.-P.: Local class field theory. In: Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965, Academic Press, London, 1967, pp. 128–161.Suche in Google Scholar

[Tat67] Tate, J.: Global class field theory. In: Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965, Thompson, Washington, D. C., 1967, pp. 162–203.Suche in Google Scholar

[Wal77] Walter, C. D.: A class number relation in Frobenius extensions of number fields, Mathematika 24(2) (1977), 216–225.10.1112/S0025579300009128Suche in Google Scholar

Received: 2024-09-26
Accepted: 2025-03-06
Published Online: 2025-06-09
Published in Print: 2025-06-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0039/html
Button zum nach oben scrollen