Startseite Solutions of second order iterative boundary value problems with nonhomogeneous boundary conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solutions of second order iterative boundary value problems with nonhomogeneous boundary conditions

  • Eric R. Kaufmann EMAIL logo und Nickolai Kosmatov
Veröffentlicht/Copyright: 9. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the existence and uniqueness of solutions to the second order iterative boundary value problem

u(t)=ft,u(t),u[2](t),atb

where u[2](t) = u(u(t)), with solutions satisfying one of the following boundary conditions u(a) = a, u(b) = b or u(a) = b, u(b) = a. The Schauder fixed point theorem is used to establish our results.

MSC 2010: 34B15; 34K10; 39B05

References

[1] Andrzej, P.: On some iterative differential equations I, Zeszyty Naukowe Uniwersytetu Jagiellonskiego, Prace Matematyczne 12 (1968), 53–56.Suche in Google Scholar

[2] Bouakkaz, A.: Bounded solutions to a three-point fourth-order iterative boundary value problem, Rocky Mountain J. Math. 52(3) (2022), 793–803.10.1216/rmj.2022.52.793Suche in Google Scholar

[3] Bélair, J.: Population models with state-dependent delays, Mathematical population dynamics (New Brunswick, NJ, 1989), 165176, Lecture Notes in Pure and Appl. Math., 131, Dekker, New York, 1991.Suche in Google Scholar

[4] Bélair, J.—Mackey, C. M.: Consumer Memory And Price Fluctuations In Commodity Markets: an integrodifferential model, J. Dynam. Differential Equations 1(3) (1989), 299–325.10.1007/BF01053930Suche in Google Scholar

[5] Berinde, V., Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes 11(1) (2010), 13–26.10.18514/MMN.2010.256Suche in Google Scholar

[6] Büger, M.—Martin, M. R. W.: Stabilizing control for an unbounded state-dependent delay differential equation, Dynamical Systems and Differential Equations, Kennesaw, GA, 2000, Discrete and Continuous Dynamical Systems (Added Volume), (2001), 56–65.Suche in Google Scholar

[7] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Inc., Mineola, NY, 2006.Suche in Google Scholar

[8] Cheraiet, S.—Bouakkaz, A.—Khemis, R.: Bounded positive solutions of an iterative three-point boundary-value problem with integral boundary condtions, J. Appl. Math. Comput. 65 (2021), 597–610.10.1007/s12190-020-01406-8Suche in Google Scholar

[9] Chouaf, S.—Bouakkaz, A.—Khemis, R.: Some existence results on positive solutions for an iterative second-order boundary-value problem with integral boundary conditions, Turkish J. Math. 46(2) (2022), 453–464.10.5269/bspm.52461Suche in Google Scholar

[10] Driver, D.: A Two-Body Problem Of Classical Electrodynamics: The one-dimensional case, Ann. Phys. 21 (1963), 122–142.10.1016/0003-4916(63)90227-6Suche in Google Scholar

[11] Driver, D.: A functional differential system of neutral type arising in a two-body problem of classical electrodynamics, Int. Symp. Nonlin. Diff. Eqs. Nonlin. Mech., Academic Press, New York, 1963, 474–484.10.1016/B978-0-12-395651-4.50051-9Suche in Google Scholar

[12] Driver, D.—Norris, J. M.: Note on uniqueness for a one-dimensional two body problem of classical electrodynamics, Ann. Phys. 42 (1967), 347–351.10.1016/0003-4916(67)90076-0Suche in Google Scholar

[13] Eder, E.: The functional-differential equation x'(t) = x(x(t)), J. Differential Equations 54(3) (1984), 390–400.10.1016/0022-0396(84)90150-5Suche in Google Scholar

[14] Fečkan, M.: On a certain type of functional-differential equations, Math. Slovaca 43(1) (1993), 39–43.Suche in Google Scholar

[15] Fečkan, M.—Wang, J.—Zhao, H. Y.: Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations, Appl. Math. Lett. 113 (2021), Art. ID 106886.10.1016/j.aml.2020.106886Suche in Google Scholar

[16] Ge, W.—Liu, Z.—Yu, Y.: On the periodic solutions of a type of differential-iterative equations, Chin. Sci. Bull. 43(3) (1998), 204–206.10.1007/BF02898911Suche in Google Scholar

[17] Johnson, R.: Functional equations, approximations, and dynamic response of systems with variable time-delay, IEEE Trans. Automatic Control 17 (1972), 398–401.10.1109/TAC.1972.1099999Suche in Google Scholar

[18] Kaufmann, E. R.: Existence and uniqueness of solutions for a second-order iterative boundary-value problem, Electron. J. Differential Equations 2018 (2018), Art. No. 150.Suche in Google Scholar

[19] Kaufmann, E. R.: A fourth-order iterative boundary value problem with Lidstone boundary conditions, Differ. Equ. Appl. 14(2) (2022), 305–312.10.7153/dea-2022-14-21Suche in Google Scholar

[20] Liu, H. Z.—Li, W.R.: Discussion on the analytic solutions of the second-order iterated differential equation, Bull. Korean Math. Soc. 43(4) (2006), 791–804.10.4134/BKMS.2006.43.4.791Suche in Google Scholar

[21] Liu, X. P.—Jia, M.: Initial value problem for a second order non-autonomous functional-differential iterative equation, Acta Math. Sinica (Chin. Ser.) 45(4) (2002), 711–718.Suche in Google Scholar

[22] Mackey, C. M.—Milton, J.: Feedback delays and the origin of blood cell dynamics, Comm. Theoret. Biol. 1 (1990) 299–327.Suche in Google Scholar

[23] Nisbet, R. M.—Gurney, W. S. C.: The systematic formulation of population models for insects with dynamically varying instar duration, Theoret. Population Biol. 23 (1983), 114–135.10.1016/0040-5809(83)90008-4Suche in Google Scholar

[24] Petuhov, V. R.: On a boundary value problem, (Russian. English summary), Trudy Sem. Teor. Differencial. Uravneniĭs Otklon. Argumentom Univ. Druz̆by Narodov Patrisa Limumby 3 (1965), 252–255.Suche in Google Scholar

[25] Wang, K.: On the equation x'(t) = f(x(x(t))), Funkcial. Ekvac. 33 (1990), 405–425.10.1016/0033-5894(90)90066-TSuche in Google Scholar

[26] Zhang, P.: Analytic solutions of a first order functional differential equation with a state derivative dependent delay, Electron. J. Differential Equations 2009 (2009), Art. No. 51.Suche in Google Scholar

[27] Zhang, P.: Analytic solutions for iterative functional differential equations, Electron. J. Differential Equations 2012 (2012), Art. No. 180.Suche in Google Scholar

[28] Zhang, P.—Gong, X.: Existence of solutions for iterative differential equations, Electron. J. Differential Equations 2014 (2014), Art. No. 07.10.1155/2014/436369Suche in Google Scholar

[29] Zhang, P.—Song, W.: Boundary value problems for an iterative differential equation, J. Appl. Anal. Com-put. 14(4) (2024), 2431–2440.10.11948/20230433Suche in Google Scholar

[30] Zhao, H.: Smooth solutions of a class of iterative functional differential equations, Abstr. Appl. Anal. 2012 (2012), Art. ID 954352.10.1155/2012/954352Suche in Google Scholar

[31] Zhao, H. Y.—Fečkan, M.: Psuedo almost periodic solutions of an iterarive equations with variable coefficients, Miskolc Mathematical Notes 18(1) (2017), 515–524.10.18514/MMN.2017.2047Suche in Google Scholar

[32] Zhao, H. Y.—Fečkan, M.: Periodic solutions for a class of differential equations with delays depending on state, Math. Commun. 23 (2018), 29–42.Suche in Google Scholar

Received: 2024-07-02
Accepted: 2024-12-27
Published Online: 2025-06-09
Published in Print: 2025-06-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0044/html
Button zum nach oben scrollen