Startseite Global attractivity of nonlinear delay dynamic equations on time scales via Lyapunov functional method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Global attractivity of nonlinear delay dynamic equations on time scales via Lyapunov functional method

  • Nour H. M. Alsharif und Başak Karpuz EMAIL logo
Veröffentlicht/Copyright: 9. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider the nonlinear dynamic equation with variable delay

(*) yΔ(t)+F(t,y(τ(t)))=0fort[t0,)T,

where 𝕋 is a time scale unbounded above, τ is an rd-continuous delay function and F is rd-continuous in its first component and continuous in its second component. We investigate the global attractivity of the trivial solution of () by the well-known Lyapunov’s functional method. Our research significantly enhances and expands upon various established results in the literature, presents new results on time scales by defining a new companion function, and offers original perspectives for nonlinear delay dynamic equations on time scales. In addition, we present some illustrative examples on time scales to showcase the applicability of the new results.

2020 Mathematics Subject Classification: 34A34; 34K20; 34N05
  1. (Communicated by Irena Jadlovská)

References

[1] Agarwal, R. P.: Difference Equations And Inequalities: Theory, Methods, and Applications, 2nd edition, Marcel Dekker, Inc., New York, 2000.10.1201/9781420027020Suche in Google Scholar

[2] Alsharif, N. H. M.—Karpuz, B.: A Test for global attractivity of linear dynamic equations with delay, Qual. Theory Dyn. Syst. 23 (2024), Paper No. 118.10.1007/s12346-023-00907-8Suche in Google Scholar

[3] Alsharif, N. H. M.—Karpuz, B.: Yoneyama’s 3/2 test for the asymptotic stability of delay dynamic equations, Internat. J. Control (2024).10.1080/00207179.2024.2380024Suche in Google Scholar

[4] Bohner, M.—Peterson, A.: Dynamic Equations On Time Scales: An Introduction with Applications, Birkhäuser Boston, Inc., Boston, MA, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar

[5] Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2003.10.1007/978-0-8176-8230-9Suche in Google Scholar

[6] Braverman, E.—Karpuz, B.: Uniform exponential stability of first-order dynamic equations with several delays, Appl. Math. Comput. 218 (2012), 10468–10485.10.1016/j.amc.2012.04.010Suche in Google Scholar

[7] Braverman, E.—Karpuz, B.: On different types of stability for linear delay dynamic equations, Z. Anal. Anwend. 36 (2017), 343–375.10.4171/zaa/1592Suche in Google Scholar

[8] Chen, M.-P.—Liu, B.: Asymptotic behavior of solutions of first order nonlinear delay difference equations, Comput. Math. Appl. 32 (1996), 9–13.10.1016/0898-1221(96)00119-8Suche in Google Scholar

[9] Graef, J. R.—Qian, C.: Global attractivity in differential equations with variable delays, J. Austral. Math. Soc. Ser. B 41 (2000), 568–579.10.1017/S0334270000011826Suche in Google Scholar

[10] Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD Thesis, Universität Würzburg, Würzburg, 1988.Suche in Google Scholar

[11] Kocic, V. L.—Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.10.1007/978-94-017-1703-8Suche in Google Scholar

[12] Li, W.—Cheng, S. S.: A stability criterion for a nonlinear neutral difference equation with delay, Southeast Asian Bull. Math. 26 (2003), 803–810.10.1007/s100120200044Suche in Google Scholar

[13] Shen, J. H.—Yu, J. S.: Asymptotic behavior of solutions of neutral differential equations with positive and negative coefficients, J. Math. Anal. Appl. 195 (1995), 517–526.10.1006/jmaa.1995.1371Suche in Google Scholar

[14] Shen, J.—Liu, Y.—Li, J.: Asymptotic behavior of solutions of nonlinear neutral differential equations with impulses, J. Math. Anal. Appl. 332 (2007), 179–189.10.1016/j.jmaa.2006.09.078Suche in Google Scholar

[15] Wang, X.—Liao, L.: On the asymptotic behavior of solutions of a nonlinear difference-differential equation, Appl. Math. Lett. 18 (2005), 267–272.10.1016/j.aml.2003.11.007Suche in Google Scholar

[16] Yu, J. S.—Cheng, S. S.: A stability criterion for a neutral difference equation with delay, Appl. Math. Lett. 7 (1994), 75–80.10.1016/0893-9659(94)90097-3Suche in Google Scholar

Received: 2024-08-30
Accepted: 2024-11-28
Published Online: 2025-06-09
Published in Print: 2025-06-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0045/html
Button zum nach oben scrollen