Startseite Mathematik Metric, stratifiable and uniform spaces of G-permutation degree
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metric, stratifiable and uniform spaces of G-permutation degree

  • Ruzinazar B. Beshimov , Dimitrios N. Georgiou EMAIL logo , Fotini Sereti und Rustam M. Zhuraev
Veröffentlicht/Copyright: 13. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the space SPGn X of G-permutation degree. Especially, new properties of this space are investigated. We study its metrazibility, semi-metrazibility, stratifiability, semi-stratifiability and uniformizability. Moreover, we study the uniform space (SPGnX,SPGnΥ), investigating when this space is totally bounded (ω-bounded). Finally, a study of universal elements in classes of spaces that are presented in this article, and related open questions complete this paper.

  1. (Communicated by L’ubica Holá)

References

[1] Banakh, T.: Topological spaces with an ωω-base, Dissertationes Math. 538 (2019), 1–141.Suche in Google Scholar

[2] Beshimov, R. B.—Georgiou, D. N.—Zhuraev, R. M.: Index boundedness and uniform connectedness of space of G-permutation degree, Appl. Gen. Topol. 22(2) (2021), 447–459.Suche in Google Scholar

[3] Beshimov, R. B.—Mamadaliev, N. K.: Categorical and topological properties of the functor of Radon functionals, Topology Appl. 275 (2020), Art. ID 106998.Suche in Google Scholar

[4] Beshimov, R. B.—Mamadaliev, N. K.—Eshtemirova, Sh. Kh.: Categorical and cardinal properties of hyperspaces with a finite number of components, J. Math. Sci. 245(3) (2020), 390–397.Suche in Google Scholar

[5] Borges, C. R.: On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.Suche in Google Scholar

[6] Creede, G. D.: Concerning semi-stratifiable spaces, Pacific J. Math. 32(1) (1970), 47–54.Suche in Google Scholar

[7] Engelking, R.: General topology, Revised and completed edition, Berlin: Helderman, p. 752, 1986.Suche in Google Scholar

[8] Fedorchuk, V. V.: Covariant functors in the category of compacta absolute retracts and Q-manifolds, Russian Math. Surveys 36(3) (1981), 177–195.Suche in Google Scholar

[9] Fedorchuk, V. V.—Filippov, V. V.: General topology. Fundamental construction, Moscow: MSU, p. 288, 2006.Suche in Google Scholar

[10] Fedorchuk, V. V.—Filippov, V. V.: Topology of hyperspaces and its applications, Moscow: Mathematica, cybernetica. 4 (1989), p. 48.Suche in Google Scholar

[11] Holá, L.—Kočinac, Lj. D. R.: Uniform boundedness in function spaces, Topology Appl. 241 (2018), 242–251.Suche in Google Scholar

[12] Iliadis, S. D.: A construction of containing spaces, Topology Appl. 107 (2000), 97–116.Suche in Google Scholar

[13] Iliadis, S. D.: Universal Spaces and Mappings. North-Holland Mathematics Studies 198, Elsevier Science B.V., Amsterdam, 2005.Suche in Google Scholar

[14] James, I. M.: Introduction to Uniform Spaces, Cambridge University Press, p. 148, 1990.Suche in Google Scholar

[15] Kočinac, Lj. D. R.—Mukhamadiev, F. G.—Sadullaev, A. K.—Meyliev, Sh. U.: Some network-type properties of the space of G-permutation degree, Appl. Gen. Topol. 24(1) (2023), 229–237.Suche in Google Scholar

[16] Kočinac, Lj. D. R.—Mukhamadiev, F. G.—Sadullaev, A. K.: Some cardinal and geometric properties of the space of permutation degree, Axioms 11(6) (2022), Art. No. 290.Suche in Google Scholar

[17] Kočinac, Lj. D. R.—Mukhamadiev, F. G.—Sadullaev, A. K.: Some tightness-type properties of the space of permutation degree, Mathematics 10(18) (2022), Art. No. 3341.Suche in Google Scholar

[18] Kočinac, Lj. D. R.—Mukhamadiev, F. G.—Sadullaev, A. K.: Some topological and cardinal properties of the space of permutation degree, Filomat 36(20) (2022), 7059–7066.Suche in Google Scholar

[19] Rghavan, T. G.—Reilly, I. L.: On semi-metrizable-closed spaces, Indian J. Pure Appl. Math. 18(3) (1987), 219–225.Suche in Google Scholar

[20] Shchepin, E. V.: Functors and uncountable powers of compacta, Uspekhi Mat. Nauk. 36(3) (1981), 3–62.Suche in Google Scholar

[21] Shukel, O.: Functors of finite degree and asymptotic dimension zero, Matematychni Studii 29(1) (2008), 101–107.Suche in Google Scholar

Received: 2022-11-11
Accepted: 2023-02-25
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0018/pdf?lang=de
Button zum nach oben scrollen