Startseite Mathematik Variations of star selection principles on hyperspaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Variations of star selection principles on hyperspaces

  • Javier Casas-de la Rosa
Veröffentlicht/Copyright: 13. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we define some combinatorial principles to characterize spaces X whose hyperspace satisfies some variation of some classical star selection principle. Specifically, the variations characterized are the selective and absolute versions of the star selection principles for the Menger and Rothberger cases; also, the hyperspaces considered in these characterizations are CL(X), 𝕂(X), đ”œ(X) and ℂ𝕊(X) in both cases, endowed with either the Fell topology or the Vietoris topology.

MSC 2010: Primary 54B20; 54D20

This work was supported by UNAM Posdoctoral Program (POSDOC).


Acknowledgement

The author thanks the referee for his/her careful reading of the paper.

  1. (Communicated by David Buhagiar)

References

[1] Bonanzinga, M.—Cammaroto, F.—Kočinac, LJ. D. R.—Matveev, M. V.: On weaker forms of Menger, Rothberger and Hurewicz properties, Mat. Vesnik 61 (2009), 13–23.Suche in Google Scholar

[2] Casas-de la Rosa, J.—Garcia-Balan, S. A.: Variations of star selection principles on small spaces, Filomat 36 (2022), 4903–4917.Suche in Google Scholar

[3] Casas-de la Rosa, J.—Martínez-Ruiz, I.—Ramírez-Páramo, A.: Star versions of the Menger property on hyperspaces, Houston J. Math. 47 (2021), 945–956.Suche in Google Scholar

[4] Casas-de la Rosa, J.—Martínez-Ruiz, I.—Ramírez-Páramo, A.: Star versions of the Rothberger property on hyperspaces, Topol. Appl. 283 (2020), Art. ID 107396.Suche in Google Scholar

[5] Caserta, A.—Di Maio, G.—Kočinac, LJ. D. R.: Versions of properties (a) and (pp), Topology Appl. 158 (2011), 1360–1368.Suche in Google Scholar

[6] Cruz-Castillo, R.—Ramírez-Páramo, A.—Tenorio, J. F.: Menger and Menger-type star selection principles for hit-and-miss topology, Topology Appl. 290 (2021), Art. ID 107574.Suche in Google Scholar

[7] Cruz-Castillo, R.—Ramírez-Páramo, A.—Tenorio, J. F.: Star and strong star-type versions of Rothberger and Menger principles for hit-and-miss topology, Topology Appl. 300 (2021), Art. ID 107758.Suche in Google Scholar

[8] Díaz-Reyes, J.—Ramírez-Páramo, A.—Tenorio, J. F.: Rothberger and Rothberger-type star selection principles on hyperspaces, Topology Appl. 287 (2021), Art. ID 107448.Suche in Google Scholar

[9] Di Maio, G.—Kočinac, LJ. D. R.—Meccariello, E.: Selection principles and hyperspace topologies, Topology Appl. 153 (2005), 912–923.Suche in Google Scholar

[10] Di Maio, G.—Kočinac, LJ. D. R.: Some covering properties of hyperspaces, Topology Appl. 155 (2008), 1959–1969.Suche in Google Scholar

[11] Hernández-Hernández, F.—Hruơák, M.: Topology of Mrówka-Isbell spaces. In: Pseudocompact Topological Spaces (M. Hruơák, A. Tamariz, M. Tkachenko, eds.), Springer International Publishing AG, 2018.Suche in Google Scholar

[12] Kočinac, LJ. D. R.: On star selection principles theory, Axioms 12 (2023), Art. No. 93.Suche in Google Scholar

[13] Kočinac, LJ. D. R.: Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421–431.Suche in Google Scholar

[14] Kočinac, LJ. D. R.: Star selection principles: A survey, Khayyam J. Math. 1 (2015), 82–106.Suche in Google Scholar

[15] Kočinac, LJ. D. R.: The Reznichenko property and the Pytkeev property in hyperspaces, Acta Math. Hungar. 107 (2005), 231–239.Suche in Google Scholar

[16] Li, Z.: Selection principles of the Fell topology and the Vietoris topology, Topology Appl. 212 (2016), 90–104.Suche in Google Scholar

[17] Scheepers, M.: Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31–62.Suche in Google Scholar

Received: 2023-01-27
Accepted: 2023-03-19
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0013/html?lang=de
Button zum nach oben scrollen