Home On direct and inverse Poletsky inequalities with a tangential dilatation
Article
Licensed
Unlicensed Requires Authentication

On direct and inverse Poletsky inequalities with a tangential dilatation

  • Evgeny Sevost’yanov EMAIL logo and Valery Targonskii
Published/Copyright: May 13, 2024
Become an author with De Gruyter Brill

Abstract

This article is devoted to the study of mappings defined in the plane domain. Under certain conditions, the upper estimate of the distortion of the modulus of families of paths is obtained. Similarly, the upper estimate of the modulus of the families of paths in the pre-image under the mapping is also obtained.

  1. (Communicated by Tomasz Natkaniec)

References

[1] Ahlfors, L.: Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.Search in Google Scholar

[2] Bojarski, B.—Iwaniec, T.: Analytical foundations of the theory of quasiconformal mappings in ℝn, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8 (1983), 257–324.Search in Google Scholar

[3] Federer, H.: Geometric Measure Theory, Springer, Berlin, 1969.Search in Google Scholar

[4] Gehring, F. W.: Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.Search in Google Scholar

[5] Golberg, A.—Salimov, R.—Sevost’yanov, E.: Normal families of discrete open mappings with controlled p-module, Contemp. Math. 667 (2016), 83–103.Search in Google Scholar

[6] Hesse, J.: A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131–144.Search in Google Scholar

[7] Ilyutko, D.—Sevost’yanov, E.: Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds, Sb. Math. 207 (2016), 65-112.Search in Google Scholar

[8] Ilyutko, D.—Sevost’yanov, E.: Boundary behaviour of open discrete mappings on Riemannian manifolds, Sb. Math. 209 (2018), 605–651.Search in Google Scholar

[9] Kovtonyuk, D.—Ryazanov, V.: New modulus estimates in Orlicz-Sobolev classes, Ann. Univ. Buchar. Math. Ser. 5 (LXIII) (2014), 131–135.Search in Google Scholar

[10] Kovtonyuk, D.—Ryazanov, V.—Salimov, R.—Sevost’yanov, E.: Toward the theory of Orlicz-Sobolev classes, St. Petersburg Math. J. 25 (2014), 929–963.Search in Google Scholar

[11] Kuratowski, K.: Topology, vol. 1, Academic Press, New York, 1968.Search in Google Scholar

[12] Lehto, O.—Virtanen, K.: Quasiconformal Mappings in the Plane, Springer, New York etc., 1973.Search in Google Scholar

[13] Martio, O.—Rickman, S.—Väisälä, J.: Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 1–31.Search in Google Scholar

[14] Martio, O.—Ryazanov, V.—Srebro, U.—Yakubov, E.: Moduli in Modern Mapping Theory, Springer Science + Business Media, LLC, New York, 2009.Search in Google Scholar

[15] Martio, O.—Srebro, U.: Periodic quasimeromorphic mappings, J. Anal. Math. 28 (1975), 20–40.Search in Google Scholar

[16] Maz’ja, V.: Sobolev Spaces, Springer-Verlag, Berlin, 1985.Search in Google Scholar

[17] Poleckii, E. A.: The modulus method for nonhomeomorphic quasiconformal mappings, Math. USSR-Sb. 12(2) (1970), 260-270.Search in Google Scholar

[18] Reshetnyak, Yu. G.: Space Mappings with Bounded Distortion . Transl. Math. Monogr., vol. 73, Amer. Math. Soc., Providence, RI 1989.Search in Google Scholar

[19] Rickman, S.: Quasiregular Mappings . Results in Mathematic and Related Areas (3), 26, Springer-Verlag, Berlin, 1993.Search in Google Scholar

[20] Ryazanov, V. I.—Sevost’yanov, E. A.: Equicontinuous classes of ring Q-homeomorphisms, Sib. Math. J. 48 (2007), 1093–1105.Search in Google Scholar

[21] Ryazanov, V.—Srebro, U.—Yakubov, E.: On ring solutions of Beltrami equations, J. Anal. Math. 96 (2005), 117–150.Search in Google Scholar

[22] Ryazanov, V.—Salimov, R.—Yakubov, E.: On Boundary Value Problems for the Beltrami Equations, Contemp. Math. 591 (2013), 211–242.Search in Google Scholar

[23] Saks, S.: Theory of the Integral, Dover Publ. Inc., New York, 1964.Search in Google Scholar

[24] Sevost’yanov, E.—Salimov, R.: On a Väisälä-type inequality for the angular dilatation of mappings and some of its applications, J. Math. Sci. 218 (2016), 69–88.Search in Google Scholar

[25] Salimov, R. R.—Sevost’yanov, E. A.: On equicontinuity of one family of inverse mappings in terms of prime ends, Ukr. Math. J. 70 (2019), 1456–1466.Search in Google Scholar

[26] Sevost’yanov, E: On the local behavior of open discrete mappings from the Orlicz-Sobolev classes, Ukr. Math. J. 68 (2017), 1447–1465.Search in Google Scholar

[27] Sevost’yanov, E. A.: Boundary behavior and equicontinuity for families of mappings in terms of prime ends, St. Petersburg Math. J. 30 (2019), 973–1005.Search in Google Scholar

[28] Sevost’yanov, E.: The inverse Poletsky inequality in one class of mappings, J. Math. Sci. 264 (2022), 455–470.Search in Google Scholar

[29] Sevost’yanov, E.—Salimov, R.—Petrov, E.: On the removable of singularities of the Orlicz-Sobolev classes, J. Math. Sci. 222 (2017), 723–740.Search in Google Scholar

[30] Sevost’yanov, E. A.—Skvortsov, S. A.: On the local behavior of the Orlicz-Sobolev classes, J. Math. Sci. 224 (2017), 563–581.Search in Google Scholar

[31] Stoïlow, S.: Lęcons sur les Principes Topologiques de la Théorie des Fonctions Analytiques, Gauthier-Villars, Paris, 1956.Search in Google Scholar

[32] Shlyk, V. A.: The equality between p-capacity and p-modulus, Sib. Math. J. 34 (1993), 1196-1200.Search in Google Scholar

[33] Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings . Lecture Notes in Math. 229, Springer-Verlag, Berlin etc., 1971.Search in Google Scholar

[34] Vuorinen, M.: Exceptional sets and boundary behavior of quasiregular mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 11 (1976), 1–44.Search in Google Scholar

[35] Ziemer, W. P.: Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460–473.Search in Google Scholar

[36] Ziemer, W. P.: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.Search in Google Scholar

Received: 2023-01-20
Accepted: 2023-06-01
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0007/pdf?lang=en
Scroll to top button