Startseite Mathematik Certain radii problems for 𝓢∗(ψ) and special functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Certain radii problems for 𝓢∗(ψ) and special functions

  • Kamaljeet Gangania EMAIL logo und S. Sivaprasad Kumar
VerĂśffentlicht/Copyright: 13. Mai 2024
VerĂśffentlichen auch Sie bei De Gruyter Brill

Abstract

In Geometric function theory, the Ma-Minda class of starlike functions has a unique place as it unifies various subclasses of starlike functions. There has been an vivid interplay between special functions and their geometric properties, like starlikeness. In this article, we establish certain special function’s radius of Ma-Minda starlikness. As an application, we obtain conditions on parameters for these special functions to be in the Ma-Minda class. Further, we focus on certain convolution properties for the Ma-Minda class that are not done so far, and study their applications in radius problem. Finally, we prove a variational problem of Goluzin, namely, the region of variability for the Ma-Minda class. Our results simplify and generalize the already-known ones.

Acknowledgement

The authors would like to thank the editor and anonymous referees for their insightful comments to improve the earlier version of the article.

  1. (Communicated by Stanisława Kanas)

References

[1] Aktaş, İ.—Baricz, Á.—Orhan, H.: Bounds for radii of starlikeness and convexity of some special functions, Turkish J. Math. 42(1) (2018), 211–226.Suche in Google Scholar

[2] Ali, R. M.—Ravichandran, V.—Jain, N. K.: Convolution of certain analytic functions, J. Anal. 18 (2010), 1–8.Suche in Google Scholar

[3] Bansal, D.—Prajapat, J. K.: Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61(3) (2016), 338–350.Suche in Google Scholar

[4] Baricz, Á.—Dimitrov, D. K.—Orhan, H.—Yağmur, N.: Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144(8) (2016), 3355–3367.Suche in Google Scholar

[5] Baricz, Á.—Kupán, P.—Szász, R.: The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142(6) (2014), 2019–2025.Suche in Google Scholar

[6] Baricz, Á.—Toklu, E.—Kadioğlu, E.: Radii of starlikeness and convexity of Wright functions, Math. Commun. 23(1) (2018), 97–117.Suche in Google Scholar

[7] Barnard, R. W.: A variational technique for bounded starlike functions, Canad. J. Math. 27 (1975), 337–347.Suche in Google Scholar

[8] Biernacki, M.—Krzyż, J.: On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A. 9 (1957), 135–147.Suche in Google Scholar

[9] Bulut, S.—Engel, O.: The radius of starlikeness, convexity and uniform convexity of the Legendre polynomials of odd degree, Results Math. 74(1) (2019), Art. No. 48.Suche in Google Scholar

[10] Bohra, N.—Ravichandran, V.: Radii problems for normalized Bessel functions of first kind, Comput. Methods Funct. Theory 18(1) (2018), 99–123.Suche in Google Scholar

[11] Brown, R. K.: Univalence of Bessel functions, Proc. Amer. Math. Soc. 11 (1960), 278–283.Suche in Google Scholar

[12] Brown, R. K.: Univalent solutions of W″ + pW = 0, Canad. J. Math. 14 (1962), 69–78.Suche in Google Scholar

[13] Cho, N. E.—Kumar, S.—Kumar, V.—Ravichandran, V.: Convolution and radius problems of analytic functions associated with the tilted Carathéodory functions, Math. Commun. 24(2) (2019), 165–179.Suche in Google Scholar

[14] Gandhi, S.—Gupta, P.—Nagpal, S.—Ravichandran, V.: Starlike functions associated with an Epicycloid, Hacet. J. Math. Stat. 51 (2022), 1637–1660.Suche in Google Scholar

[15] Gangadharan, A.—Ravichandran, V.—Shanmugam, T. N.: Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211(1) (1997), 301–313.Suche in Google Scholar

[16] Gangania, K.—Kumar, S. S.: On certain generalizations of 𝓢*(ψ), Comput. Methods Funct. Theory 22 (2022), 215–227.Suche in Google Scholar

[17] Gangania, K.—Kumar, S. S.: Bohr-Rogosinski phenomenon for 𝓢*(ψ) and 𝓒(ψ), Mediterr. J. Math. 19 (2022), Art. No. 161.Suche in Google Scholar

[18] Gangania, K.—-Kumar, S. S.: 𝓢*(ψ) and 𝓒(ψ)-radii for some special functions, Iran. J. Sci. Technol. Trans. A Sci. 46 (2022), 955–966.Suche in Google Scholar

[19] Goluzin, G. M.: On a variational method in the theory of analytic functions, Amer. Math. Soc. Transl. 18(2) (1961), 1–14.Suche in Google Scholar

[20] Kanas, S.—Wiśniowska, A.: Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45(4) (2000), 647–657.Suche in Google Scholar

[21] Kargar, R.—Ebadian, A.—Sokół, J.: Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory 11(7) (2017), 1639–1649.Suche in Google Scholar

[22] Kreyszig, E.—Todd, J.: The radius of univalence of Bessel functions I, Illinois J. Math. 4 (1960), 143–149.Suche in Google Scholar

[23] Kumar, V.—Cho, N. E.—Ravichandran, V.—Srivastava, H. M.: Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69(5) (2019), 1053–1064.Suche in Google Scholar

[24] Kumar, S. S.—Gangania, K.: A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), Art. No. 54.Suche in Google Scholar

[25] Kuroki, K.—Owa, S.: Notes on new class for certain analytic functions (Conditions for Univalency of Functions and Applications), RIMS Kokyuroku 1772, 2011, pp. 21-25.Suche in Google Scholar

[26] Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA, 1992, pp. 157–169.Suche in Google Scholar

[27] MacGregor, T. H.: Hull subordination and extremal problems for starlike and spirallike mappings, Trans. Amer. Math. Soc. 183 (1973), 499–510.Suche in Google Scholar

[28] Raina, R. K.—Sokół, J.: Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353(11) (2015), 973–978.Suche in Google Scholar

[29] Ruscheweyh, S.—Sheil-Small, T.: Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.Suche in Google Scholar

[30] Sokół, J.—Stankiewicz, J.: Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101–105.Suche in Google Scholar

[31] Szász, R.: About the radius of starlikeness of Bessel functions of the first kind, Monatsh. Math. 176 (2015), 323–330.Suche in Google Scholar

[32] Wang, L. M.: The tilted Carathéodory class and its applications, J. Korean Math. Soc. 49(4) (2012), 671–686.Suche in Google Scholar

[33] Watson, G. N.: Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944.Suche in Google Scholar

[34] Wilf, H. S.: The radius of univalence of certain entire functions, Illinois J. Math. 6 (1962), 242–244.Suche in Google Scholar

Received: 2023-01-17
Accepted: 2023-03-23
Published Online: 2024-05-13
Published in Print: 2024-02-26

Š 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0006/pdf?lang=de
Button zum nach oben scrollen