Startseite Mathematik Subordination properties and coefficient problems for a novel class of convex functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Subordination properties and coefficient problems for a novel class of convex functions

  • Ebrahim Analouei Adegani EMAIL logo , Mostafa Jafari , Teodor Bulboacă , Nak Eun Cho und Ahmad Motamednezhad
Veröffentlicht/Copyright: 13. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, a novel family of analytical functions connected to convex functions in the open unit is introduced and investigated. Additionally, relationships between this class and other subclasses of analytic functions are deduced. Further, different results for the mentioned class and several new interesting properties are obtained.

MSC 2010: 30C45; 30C80
  1. (Communicated by Stanisława Kanas)

References

[1] Adegani, E. A.—Bulboacă, T.—Hameed Mohammed, N.—Zaprawa, P.: Solution of logarithmic coefficients conjectures for some classes of convex functions, Math. Slovaca 73 (2023), 79–88.Suche in Google Scholar

[2] Adegani, E. A.—Bulboacă, T.—Motamednezhad, A.: Sufficient condition for p-valent strongly starlike functions, J. Contemp. Mathemat. Anal. 55 (2020), 213–223.Suche in Google Scholar

[3] Cho, N. E.—Ebadian, A.—Bulut, S.—Adegani, E. A.: Subordination implications and coefficient estimates for subclasses of starlike functions, Mathematics 8 (2020), Art. No. 1150.Suche in Google Scholar

[4] Darus, M.—Hussain, S.—Raza, M.—SokóŁ, J.: On a subclass of starlike functions, Results Math. 73 (2018), Art. No. 22.Suche in Google Scholar

[5] Hameed Mohammed, N.—Adegani, E. A.—Bulboacă, T.—Cho, N. E.: A family of holomorphic functions defined by differential inequality, Math. Inequal. Appl. 25 (2022), 27–39.Suche in Google Scholar

[6] Kanas, S.—Wiśniowska, A.: Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327–336.Suche in Google Scholar

[7] Keogh, F. R.—Merkes, E. P.: A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.Suche in Google Scholar

[8] Khan, B.—Aldawish, I.—Araci, S.—Khan, M. G.: Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract. 6 (2022), Art. No. 261.Suche in Google Scholar

[9] Ma, W.—Minda, D.: Uniformly convex functions, Ann. Polon. Math. 2 (1992), 165–-175.Suche in Google Scholar

[10] Marx, A.: Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932–33), 40–67.Suche in Google Scholar

[11] Milin, I. M.: On a property of the logarithmic coefficients of univalent functions, In: Metric Questions in the Theory of Functions, Naukova Dumka, Kiev, 1980, pp. 86–90 (in Russian).Suche in Google Scholar

[12] Miller, S. S.—Mocanu, P. T.: Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297–309.Suche in Google Scholar

[13] Miller, S. S.—Mocanu, P. T.: Differential Subordinations Theory and Applications, Marcel Dekker Inc., New York, 2000.Suche in Google Scholar

[14] Mocanu, P. T.—Ripeanu, D.—Şerb, I.: The order of starlikeness of certain integral operators, Mathematica(Cluj) 23 (1981), 225–230.Suche in Google Scholar

[15] Nehari, Z.: Conformal Mapping, McGraw-Hill; New York, NY, USA, 1952.Suche in Google Scholar

[16] Pommerenke, Ch.: On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 44 (1966), 111–122.Suche in Google Scholar

[17] Prokhorov, D. V.—Szynal, J.: Inverse coefficients for (α;β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.Suche in Google Scholar

[18] Răducanu, D.: Second Hankel determinant for a class of analytic functions defined by q-derivative operator, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 27 (2019), 167–177.Suche in Google Scholar

[19] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189–196.Suche in Google Scholar

[20] Swaminathan, A.—Wani, L. A.: Subordination-implication problems concerning the nephroid starlikeness of analytic functions, Math. Slovaca 72 (2022), 1185–1202.Suche in Google Scholar

[21] Sim, Y. J.—Lecko, A.—Thomas, D. K.: The second Hankel determinant for strongly convex and Ozaki close-to-convex functions, Ann. Mat. Pura Appl. 200 (2021), 2515–2533.Suche in Google Scholar

[22] SokóŁ, J.—Nunokawa, M.: On some class of convex functions, C. R. Math. Acad. Sci. Paris 353 (2015), 427–431.Suche in Google Scholar

[23] Strohhäcker, E.: Beiträge zur Theorie der schlichten Functionen, Math. Z. 37 (1933), 356–380.Suche in Google Scholar

[24] Ullah, N.—Ali, I.—Hussain, S. M.—Ro, J.-S.—Khan, N.—Khan, B.: Third Hankel determinant for a subclass of univalent functions associated with lemniscate of bernoulli, Fractal Fract. 6 (2022), Art. No. 48.Suche in Google Scholar

[25] Zaprawa, P.: Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex. 27 (2021), Art. No. 62.Suche in Google Scholar

Received: 2023-01-26
Accepted: 2023-04-12
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0005/html?lang=de
Button zum nach oben scrollen