Home Mathematics Regular Double p-Algebras: A Converse to a Katriňák Theorem and Applications
Article
Licensed
Unlicensed Requires Authentication

Regular Double p-Algebras: A Converse to a Katriňák Theorem and Applications

  • Juan M. Cornejo , Michael Kinyon and Hanamantagouda P. Sankappanavar EMAIL logo
Published/Copyright: December 18, 2023
Become an author with De Gruyter Brill

ABSTRACT

In 1973, Katriňák proved that regular double p-algebras can be regarded as (regular) double Heyting algebras by ingeniously constructing binary terms for the Heyting implication and its dual in terms of pseudocomplement and its dual. In this paper, we prove a converse to Katriňák’s theorem, in the sense that in the variety D of regular dually pseudocomplemented Heyting algebras, the implication operation → satisfies Katriňák’s formula. As applications of this result together with the above-mentioned Katriňák’s theorem, we show that the varieties DBL , D , d and DBL of regular double p-algebras, regular dually pseudocomplemented Heyting algebras, regular pseudocomplemented dual Heyting algebras, and regular double Heyting algebras, respectively, are term-equivalent to each other and also that the varieties DM , DM , DMDBL , DMDBL of regular De Morgan p-algebras, regular De Morgan Heyting algebras, regular De Morgan double Heyting algebras, and regular De Morgan double p-algebras, respectively, are also term-equivalent to each other. From these results and recent results of Adams, Sankappanavar and Vaz de Carvalho on varieties of regular double p-algebras and regular pseudocomplemented De Morgan algebras, we deduce that the lattices of subvarieties of all these varieties have cardinality 20 . We then define new logics, DPC , PCd and D , and show that they are algebraizable with D , d and DM , respectively, as their equivalent algebraic semantics. It is also deduced that the lattices of extensions of all of the above mentioned logics have cardinality 20 .

2020 Mathematics Subject Classification: Primary 03G25; 06D20; 08B15; 06D15; 03C05; 03B50; Secondary 08B26; 06D30; 06E75

(Communicated by Anatolij Dvurečenskij)

In Memory of Professor Tibor Katriňák


Funding statement: The first author wants to thank the institutional support of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and Universidad Nacional del Sur.

REFERENCES

[1] Adams, M. E.—Sankappanavar, H. P.—Vaz de Carvalho, J.: Regular double p-algebras, Math. Slovaca 69 (2019), 15–34.10.1515/ms-2017-0200Search in Google Scholar

[2] Adams, M. E.—Sankappanavar, H. P.—Vaz de Carvalho, J.: Varieties of regular pseudocomplemented De Morgan algebras, Order 37 (2020), 529–557.10.1007/s11083-019-09518-ySearch in Google Scholar

[3] Balbes, R.—Dwinger, P.: Distributive Lattices, Univ. of Missouri Press, Columbia, 1974.Search in Google Scholar

[4] Beazer, R.: The determination congruence on double p-algebras, Algebra Universalis 6 (1976), 121–129.10.1007/BF02485824Search in Google Scholar

[5] Białynicki-Birula, A.—Rasiowa, H.: On the representation of quasi-Boolean algebras, Bulletin de l’Académie Polonaise des Sciences 5 (1957), 259–261.Search in Google Scholar

[6] Blok, W. J.—Pigozzi, D.: Algebraizable Logics. Mem. Amer. Math. Soc. 396, Providence, Rhode Island, 1989.10.1090/memo/0396Search in Google Scholar

[7] Burris, S.—Sankappanavar, H. P.: A course in universal algebra. Grad. Texts in Math. 78, Springer-Verlag, New York, 1981; The millennium edition, 2012 is freely available at: https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.10.1007/978-1-4613-8130-3Search in Google Scholar

[8] Cornejo, J. M.: The semi-Heyting-Brouwer logic, Studia Logica 103(4) (2015), 853–875.10.1007/s11225-014-9596-6Search in Google Scholar

[9] Cornejo, J. M.—Sankappanavar, H. P.: A Logic for dually hemimorphic semi-Heyting algebras and its axiomatic extensions, Bull. Sect. Logic 51(4) (2022), 555–645.10.18778/0138-0680.2022.23Search in Google Scholar

[10] Denecke, K.: Functional completeness in pseudocomplemented De Morgan algebras, Beitr. Algebra Geom. 24 (1987), 135–150.Search in Google Scholar

[11] Font, J. M.: Abstract Algebraic Logic. An Introductory Textbook. Math. Logic Found., vol. 60, Stud. Log. (Lond.), College Publications, London, 2016.Search in Google Scholar

[12] Gaitán, H.: Free algebras in certain varieties of distributive pseudocomplemented De Morgan algebras, MLQ Math. Log. Q. 44 (1998), 553–567.10.1002/malq.19980440414Search in Google Scholar

[13] Guzmán, F.—Squier, C.: Subdirectly irreducible and free Kleene-Stone algebras, Algebra Universalis 31 (1994), 266–273.10.1007/BF01236522Search in Google Scholar

[14] Jónsson, B.: Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121.10.7146/math.scand.a-10850Search in Google Scholar

[15] Kalman, J. A.: Lattices with involution, Trans. Amer. Math. Soc. 87 (1958), 485–491.10.1090/S0002-9947-1958-0095135-XSearch in Google Scholar

[16] Katriňák, T.: The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis 3 (1973), 238–246.10.1007/BF02945123Search in Google Scholar

[17] Monteiro, A.: Sur les algebres de Heyting symetriques, Port. Math. 39 (1980), 1–237.Search in Google Scholar

[18] Mccune, W.: Prover9 and Mace 4, http://www.cs.unm.edu/mccune/prover9/.Search in Google Scholar

[19] Rasiowa, H.: N -lattices and constructive logic with strong negation, Fund. Math. 46 (1958), 61–80.10.4064/fm-46-1-61-80Search in Google Scholar

[20] Rasiowa, H.: An Algebraic Approach to Non-Classical Logics, North–Holland Publ. Comp., Amsterdam, 1974.Search in Google Scholar

[21] Rauszer, C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations, Fund. Math. 83(3) (1973/1974), 219–249.10.4064/fm-83-3-219-249Search in Google Scholar

[22] Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Dissertationes Math. (Rozprawy Matematyczne) CLXVII (1980), 167–62.Search in Google Scholar

[23] Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math. 2 (1949), 43–49.Search in Google Scholar

[24] Romanowska, A.: On some equational classes of distributive double p-algebras, Demonstr. Math. IX(4) (1976), 593–607.10.1515/dema-1976-0408Search in Google Scholar

[25] Romanowska, A.: Subdirectly irreducuble pseudocomplemented De Morgan algebras, Algebra Universalis 12 (1981), 70–75.10.1007/BF02483864Search in Google Scholar

[26] Sankappanavar, H. P.: Heyting algebras with dual pseudocomplementation, Pacific J. Math. 117 (1985), 405–415.10.2140/pjm.1985.117.405Search in Google Scholar

[27] Sankappanavar, H. P.: Pseudocomplemented Okham and De Morgan algebras, MLQ Math. Log. Q. 32 (1986), 385–394.10.1002/malq.19860322502Search in Google Scholar

[28] Sankappanavar, H. P.: Heyting algebras with a dual lattice endomorphism, MLQ Math. Log. Q. 33 (1987), 565–573.10.1002/malq.19870330610Search in Google Scholar

[29] Sankappanavar, H. P.: Semi-De Morgan algebras, J. Symbolic. Logic 52 (1987), 712–724.10.1017/S0022481200029716Search in Google Scholar

[30] Sankappanavar, H. P.: Principal congruences of pseudocomplemented De Morgan algebras, MLQ Math. Log. Q. 33 (1987), 3–11.10.1002/malq.19870330102Search in Google Scholar

[31] Sankappanavar, H. P.: Semi-Heyting algebras: An abstraction from Heyting algebras. In: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish: Actas del IX Congresso Dr. Antonio A. R. Monteiro, held in BahÍa Blanca, May 30-June 1, 2007), edited by M. Abad and I. Viglizzo (Universidad Nacional del Sur) (2008), 33–66.Search in Google Scholar

[32] Sankappanavar, H. P.: Expansions of semi-Heyting algebras. I: Discriminator varieties, Studia Logica 98(1–2) (2011), 27–81.10.1007/s11225-011-9322-6Search in Google Scholar

[33] Sankappanavar, H. P.: Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity, Categ. Gen. Algebr. Struct. Appl. 2 (2014), 47–64.Search in Google Scholar

[34] Sankappanavar, H. P.: Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity, Categ. Gen. Algebr. Struct. Appl. 2 (2014), 65–82.Search in Google Scholar

[35] Sankappanavar, H. P.: A few historical glimpses into the interplay between algebra and logic, and investigations into Gautama algebras. In: Handbook of Logical Thought in India, S. Sarukkai, M. K. Chakraborty (eds.), Springer Nature India Limited, 2022, pp. 979–1052.10.1007/978-81-322-2577-5_54Search in Google Scholar

[36] Sankappanavar, H. P.: De Morgan semi-Heyting and Heyting algebras. In: New Trends in Algebra and Combinatorics, Proceeding of the 3rd International Congress in Algebra and Combinatorics ICAC2017, 2020, pp. 25–28.10.1142/9789811215476_0024Search in Google Scholar

[37] Sankappanavar, H. P.—Vaz de Carvalho, J.: Congruence properties of pseudocomplemented De Morgan algebras, MLQ Math. Log. Q. 60 (2014), 425–436.10.1002/malq.201300038Search in Google Scholar

[38] Varlet, J.: Algébres de Łukasiewicz trivalentes, Bull. Soc. Roy. Sci. Liége 36 (1968), 399–408.Search in Google Scholar

[39] Varlet, J.: A regular variety of type 〈2, 2, 1, 1, 0, 0〉, Algebra Universalis 2 (1972), 218–223.10.1007/BF02945029Search in Google Scholar

Received: 2022-10-19
Accepted: 2022-12-21
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0099/pdf
Scroll to top button